Advertisement

BioMetals

, Volume 22, Issue 1, pp 117–130 | Cite as

Microbial responses to environmental arsenic

  • David Páez-Espino
  • Javier Tamames
  • Víctor de Lorenzo
  • David Cánovas
Article

Abstract

Microorganisms have evolved dynamic mechanisms for facing the toxicity of arsenic in the environment. In this sense, arsenic speciation and mobility is also affected by the microbial metabolism that participates in the biogeochemical cycle of the element. The ars operon constitutes the most ubiquitous and important scheme of arsenic tolerance in bacteria. This system mediates the extrusion of arsenite out of the cells. There are also other microbial activities that alter the chemical characteristics of arsenic: some strains are able to oxidize arsenite or reduce arsenate as part of their respiratory processes. These type of microorganisms require membrane associated proteins that transfer electrons from or to arsenic (AoxAB and ArrAB, respectively). Other enzymatic transformations, such as methylation-demethylation reactions, exchange inorganic arsenic into organic forms contributing to its complex environmental turnover. This short review highlights recent studies in ecology, biochemistry and molecular biology of these processes in bacteria, and also provides some examples of genetic engineering for enhanced arsenic accumulation based on phytochelatins or metallothionein-like proteins.

Keywords

Arsenic Bioremediation Bacteria Metallothioneins Heavy metals ars genes 

Notes

Acknowledgments

The work in Authors’ Laboratory is funded by contracts of the 7th Framework Programme of the European Union and grants of the Spanish Ministery of Science and Innovation.

References

  1. Achour AR, Bauda P, Billard P (2007) Diversity of arsenite transporter genes from arsenic-resistant soil bacteria. Res Microbiol 158:128–137. doi: 10.1016/j.resmic.2006.11.006 PubMedGoogle Scholar
  2. Afkar E, Lisak J, Saltikov C, Basu P, Oremland RS, Stolz JF (2003) The respiratory arsenate reductase from Bacillus selenitireducens strain MLS10. FEMS Microbiol Lett 226:107–112. doi: 10.1016/S0378-1097(03)00609-8 PubMedGoogle Scholar
  3. Ahmann D, Roberts AL, Krumholz LR, Morel FM (1994) Microbe grows by reducing arsenic. Nature 371:750. doi: 10.1038/371750a0 PubMedGoogle Scholar
  4. Anderson GL, Williams J, Hille R (1992) The purification and characterization of arsenite oxidase from Alcaligenes faecalis, a molybdenum-containing hydroxylase. J Biol Chem 267:23674–23682PubMedGoogle Scholar
  5. Appelo CA, Van Der Weiden MJ, Tournassat C, Charlet L (2002) Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic. Environ Sci Technol 36:3096–3103. doi: 10.1021/es010130n PubMedGoogle Scholar
  6. Bae W, Wu CH, Kostal J, Mulchandani A, Chen W (2003) Enhanced mercury biosorption by bacterial cells with surface-displayed MerR. Appl Environ Microbiol 69:3176–3180PubMedGoogle Scholar
  7. Bentley R, Chasteen TG (2002) Microbial methylation of metalloids: arsenic, antimony, and bismuth. Microbiol Mol Biol Rev 66:250–271. doi: 10.1128/MMBR.66.2.250-271.2002 PubMedGoogle Scholar
  8. Bizily SP, Rugh CL, Meagher RB (2000) Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nat Biotechnol 18:213–217. doi: 10.1038/72678 PubMedGoogle Scholar
  9. Butcher BG, Deane SM, Rawlings DE (2000) The chromosomal arsenic resistance genes of Thiobacillus ferrooxidans have an unusual arrangement and confer increased arsenic and antimony resistance to Escherichia coli. Appl Environ Microbiol 66:1826–1833. doi: 10.1128/AEM.66.5.1826-1833.2000 PubMedGoogle Scholar
  10. Cai J, Salmon K, DuBow MS (1998) A chromosomal ars operon homologue of Pseudomonas aeruginosa confers increased resistance to arsenic and antimony in Escherichia coli. Microbiology 144:2705–2713PubMedGoogle Scholar
  11. Cánovas D, de Lorenzo V (2007) Osmotic stress limits arsenic hyper-tolerance in Aspergillus sp. P37. FEMS Ecol 61:258–263. doi: 10.1111/j.1574-6941.2007.00344.x Google Scholar
  12. Canovas D, Cases I, de Lorenzo V (2003) Heavy metal tolerance and metal homeostasis in Pseudomonas putida as revealed by complete genome analysis. Environ Microbiol 5:1242–1256. doi: 10.1111/j.1462-2920.2003.00463.x PubMedGoogle Scholar
  13. Cánovas D, Vooijs R, Schat H, de Lorenzo V (2004) The role of thiol species in the hyper-tolerance of Aspergillus sp. P37 to arsenic. J Biol Chem 279:51234–51240. doi: 10.1074/jbc.M408622200 PubMedGoogle Scholar
  14. Carlin A, Shi W, Dey S, Rosen BP (1995) The ars operon of Escherichia coli confers arsenical and antimonial resistance. J Bacteriol 177:981–986PubMedGoogle Scholar
  15. Challenger F (1951) Biological methylation. Adv Enzymol Relat Subj Biochem 12:429–491. doi: 10.1002/9780470122570.ch8 PubMedGoogle Scholar
  16. Cullen WR, Reimer KJ (1989) Arsenic speciation in the environment. Chem Rev 89:713–764. doi: 10.1021/cr00094a002 Google Scholar
  17. de Lorenzo V (2008) Systems biology approaches to bioremediation. Curr Opin Biotechnol 19:579–589. doi: 10.1016/j.copbio.2008.10.004 PubMedGoogle Scholar
  18. Diorio C, Cai J, Marmor J, Shinder R, DuBow MS (1995) An Escherichia coli chromosomal ars operon homolog is functional in arsenic detoxification and is conserved in Gram-negative bacteria. J Bacteriol 177:2050–2056PubMedGoogle Scholar
  19. Dombrowski PM, Long W, Farley KJ, Mahony JD, Capitani JF, Di Toro DM (2005) Thermodynamic analysis of arsenic methylation. Environ Sci Technol 39:2169–2176. doi: 10.1021/es0489691 PubMedGoogle Scholar
  20. Eguchi N, Kuroda K, Endo G (1997) Metabolites of arsenic induced tetraploids and mitotic arrest in cultured cells. Arch Environ Toxicol 32:141–145. doi: 10.1007/s002449900166 Google Scholar
  21. Ellis PJ, Conrads T, Hille R, Kuhn P (2001) Crystal structure of the 100 kDa arsenite oxidase from Alcaligenes faecalis in two crystal forms at 1.64 A and 2.03 A. Structure 9:125–132. doi: 10.1016/S0969-2126(01)00566-4 PubMedGoogle Scholar
  22. Essa AM, Macaskie LE, Brown NL (2002) Mechanisms of mercury bioremediation. Biochem Soc Trans 30:672–674. doi: 10.1042/BST0300672 PubMedGoogle Scholar
  23. Fisher E et al (2008) Transformation of inorganic and organic arsenic by Alkaliphilus oremlandii sp. nov. strain OhILAs. Ann N Y Acad Sci 1125:230–241. doi: 10.1196/annals.1419.006 PubMedGoogle Scholar
  24. Gihring TM, Banfield JF (2001) Arsenite oxidation and arsenate respiration by a new Thermus isolate. FEMS Microbiol Lett 204:335–340. doi: 10.1111/j.1574-6968.2001.tb10907.x PubMedGoogle Scholar
  25. Gihring TM, Druschel GK, McCleskey RB, Hamers RJ, Banfield JF (2001) Rapid arsenite oxidation by Thermus aquaticus and Thermus thermophilus: field and laboratory investigations. Environ Sci Technol 35:3857–3862. doi: 10.1021/es010816f PubMedGoogle Scholar
  26. Gourbal B et al (2004) Drug uptake and modulation of drug resistance in Leishmania by an aquaglyceroporin. J Biol Chem 279:31010–31017. doi: 10.1074/jbc.M403959200 PubMedGoogle Scholar
  27. Hamer DH (1986) Metallothionein. Annu Rev Biochem 55:913–951PubMedGoogle Scholar
  28. Harold FM, Baarda JR (1966) Interaction of arsenate with phosphate-transport systems in wild-type and mutant Streptococcus faecalis. J Bacteriol 91:2257–2262PubMedGoogle Scholar
  29. Hemond HF (1995) Movement and distribution of arsenic in the Aberjona watershed. Environ Health Perspect 103(Suppl 1):35–40. doi: 10.2307/3432010 PubMedGoogle Scholar
  30. Huber R, Sacher M, Vollmann A, Huber H, Rose D (2000) Respiration of arsenate and selenate by hyperthermophilic archaea. Syst Appl Microbiol 23:305–314PubMedGoogle Scholar
  31. Jackson CR, Langner HW, Donahoe-Christiansen J, Inskeep WP, McDermott TR (2001) Molecular analysis of microbial community structure in an arsenite-oxidizing acidic thermal spring. Environ Microbiol 3:532–542. doi: 10.1046/j.1462-2920.2001.00221.x PubMedGoogle Scholar
  32. Kaise T, Hanaoka K, Tagawa S (1985) The formation of trimethylarsine oxide from arsenobetaine by biodegradation with marine microorganisms. Chemosphere 16:2551–2558. doi: 10.1016/0045-6535(87)90313-4 Google Scholar
  33. Kashyap DR, Botero LM, Franck WL, Hassett DJ, McDermott TR (2006) Complex regulation of arsenite oxidation in Agrobacterium tumefaciens. J Bacteriol 188:1081–1088. doi: 10.1128/JB.188.3.1081-1088.2006 PubMedGoogle Scholar
  34. Koch I, Feldmann J, Wang L, Andrewes P, Reimer KJ, Cullen WR (1999) Arsenic in the Meager Creek hot springs environment, British Columbia, Canada. Sci Total Environ 236:101–117. doi: 10.1016/S0048-9697(99)00273-9 PubMedGoogle Scholar
  35. Kostal J, Yang R, Wu CH, Mulchandani A, Chen W (2004) Enhanced arsenic accumulation in engineered bacterial cells expressing ArsR. Appl Environ Microbiol 70:4582–4587. doi: 10.1128/AEM.70.8.4582-4587.2004 PubMedGoogle Scholar
  36. Krafft T, Macy JM (1998) Purification and characterization of the respiratory arsenate reductase of Chrysiogenes arsenatis. Eur J Biochem 255:647–653. doi: 10.1046/j.1432-1327.1998.2550647.x PubMedGoogle Scholar
  37. Krautler B (1990) Chemistry of methylcorrinoids related to their roles in bacterial C1 metabolism. FEMS Microbiol Rev 7:349–354PubMedGoogle Scholar
  38. Langner HW, Jackson CR, McDermott TR, Inskeep WP (2001) Rapid oxidation of arsenite in a hot spring ecosystem, Yellowstone National Park. Environ Sci Technol 35:3302–3309PubMedGoogle Scholar
  39. Lebrun E et al (2003) Arsenite oxidase, an ancient bioenergetic enzyme. Mol Biol Evol 20:686–693. doi: 10.1093/molbev/msg071 PubMedGoogle Scholar
  40. Leist M, Casey RJ, Caridi D (2000) The management of arsenic wastes: problems and prospects. J Hazard Mater 76:125–138. doi: 10.1016/S0304-3894(00)00188-6 PubMedGoogle Scholar
  41. Lin YF, Yang J, Rosen BP (2007) ArsD: an As(III) metallochaperone for the ArsAB As(III)-translocating ATPase. J Bioenerg Biomembr 39:453–458. doi: 10.1007/s10863-007-9113-y PubMedGoogle Scholar
  42. Liu Z, Carbrey JM, Agre P, Rosen BP (2004) Arsenic trioxide uptake by human and rat aquaglyceroporins. Biochem Biophys Res Commun 316:1178–1185. doi: 10.1016/j.bbrc.2004.03.003 PubMedGoogle Scholar
  43. Liu Z, Sanchez MA, Jiang X, Boles E, Landfear SM, Rosen BP (2006) Mammalian glucose permease GLUT1 facilitates transport of arsenic trioxide and methylarsonous acid. Biochem Biophys Res Commun 351:424–430. doi: 10.1016/j.bbrc.2006.10.054 PubMedGoogle Scholar
  44. Lovley DR, Coates JD (1997) Bioremediation of metal contamination. Curr Opin Biotechnol 8:285–289. doi: 10.1016/S0958-1669(97)80005-5 PubMedGoogle Scholar
  45. Macur RE, Wheeler JT, McDermott TR, Inskeep WP (2001) Microbial populations associated with the reduction and enhanced mobilization of arsenic in mine tailings. Environ Sci Technol 35:3676–3682. doi: 10.1021/es0105461 PubMedGoogle Scholar
  46. Macy JM et al (1996) Chrysiogenes arsenatis gen. nov., sp. nov., a new arsenate-respiring bacterium isolated from gold mine wastewater. Int J Syst Bacteriol 46:1153–1157PubMedGoogle Scholar
  47. Macy JM, Santini JM, Pauling BV, O’Neill AH, Sly LI (2000) Two new arsenate/sulfate-reducing bacteria: mechanisms of arsenate reduction. Arch Microbiol 173:49–57. doi: 10.1007/s002030050007 PubMedGoogle Scholar
  48. Malasarn D, Saltikov CW, Campbell KM, Santini JM, Hering JG, Newman DK (2004) arrA is a reliable marker for As(V) respiration. Science 306:455. doi: 10.1126/science.1102374 PubMedGoogle Scholar
  49. Malasarn D, Keeffe JR, Newman DK (2008) Characterization of the arsenate respiratory reductase from Shewanella sp. strain ANA-3. J Bacteriol 190:135–142. doi: 10.1128/JB.01110-07 PubMedGoogle Scholar
  50. Mass MJ et al (2001) Methylated trivalent arsenic species are genotoxic. Chem Res Toxicol 14:355–361. doi: 10.1021/tx000251l PubMedGoogle Scholar
  51. Meng YL, Liu Z, Rosen BP (2004) As(III) and Sb(III) uptake by GlpF and efflux by ArsB in Escherichia coli. J Biol Chem 279:18334–18341. doi: 10.1074/jbc.M400037200 PubMedGoogle Scholar
  52. Merrifield ME, Ngu T, Stillman MJ (2004) Arsenic binding to Fucus vesiculosus metallothionein. Biochem Biophys Res Commun 324:127–132. doi: 10.1016/j.bbrc.2004.09.027 PubMedGoogle Scholar
  53. Messens J, Silver S (2006) Arsenate reduction: thiol cascade chemistry with convergent evolution. J Mol Biol 362:1–17. doi: 10.1016/j.jmb.2006.07.002 PubMedGoogle Scholar
  54. Michalke K, Wickenheiser EB, Mehring M, Hirner AV, Hensel R (2000) Production of volatile derivatives of metal(loid)s by microflora involved in anaerobic digestion of sewage sludge. Appl Environ Microbiol 66:2791–2796. doi: 10.1128/AEM.66.7.2791-2796.2000 PubMedGoogle Scholar
  55. Moore AJ, Kukuk PF (2002) Quantitative genetic analysis of natural populations. Nat Rev Genet 3:971–978. doi: 10.1038/nrg951 PubMedGoogle Scholar
  56. Moore MM, Harrington-Brock K, Doerr CL (1997) Relative genotoxic potency of arsenic and its methylated metabolites. Mutat Res 386:279–290PubMedGoogle Scholar
  57. Muller D, Lievremont D, Simeonova DD, Hubert JC, Lett MC (2003) Arsenite oxidase aox genes from a metal-resistant beta-proteobacterium. J Bacteriol 185:135–141. doi: 10.1128/JB.185.1.135-141.2003 PubMedGoogle Scholar
  58. Newman D, Beveridge T, Morel F (1997a) Precipitation of arsenic trisulfide by Desulfotomaculum auripigmentum. Appl Environ Microbiol 63:2022–2028PubMedGoogle Scholar
  59. Newman DK et al (1997b) Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum sp. nov. Arch Microbiol 168:380–388. doi: 10.1007/s002030050512 PubMedGoogle Scholar
  60. Niggemyer A, Spring S, Stackebrandt E, Rosenzweig RF (2001) Isolation and characterization of a novel as(v)-reducing bacterium: implications for arsenic mobilization and the genus Desulfitobacterium. Appl Environ Microbiol 67:5568–5580. doi: 10.1128/AEM.67.12.5568-5580.2001 PubMedGoogle Scholar
  61. Nordstrom DK (2002) Worldwide occurrences of arsenic in ground water. Science 296:2143–2145. doi: 10.1126/science.1072375 PubMedGoogle Scholar
  62. Notti A, Fattorini D, Razzetti EM, Regoli F (2007) Bioaccumulation and biotransformation of arsenic in the Mediterranean polychaete Sabella spallanzanii: experimental observations. Environ Toxicol Chem 26:1186–1191. doi: 10.1897/06-362R.1 PubMedGoogle Scholar
  63. Oremland RS, Stolz JF (2003) The ecology of arsenic. Science 300:939–944. doi: 10.1126/science.1081903 PubMedGoogle Scholar
  64. Oremland RS, Stolz JF (2005) Arsenic, microbes and contaminated aquifers. Trends Microbiol 13:45–49. doi: 10.1016/j.tim.2004.12.002 PubMedGoogle Scholar
  65. Oremland RS, Hoeft SE, Santini JM, Bano N, Hollibaugh RA, Hollibaugh JT (2002) Anaerobic oxidation of arsenite in Mono Lake water and by a facultative, arsenite-oxidizing chemoautotroph, strain MLHE-1. Appl Environ Microbiol 68:4795–4802. doi: 10.1128/AEM.68.10.4795-4802.2002 PubMedGoogle Scholar
  66. Otte ML, Kearns CC, Doyle MO (1995) Accumulation of arsenic and zinc in the rhizosphere of wetland plants. Bull Environ Contam Toxicol 55:154–161. doi: 10.1007/BF00212403 PubMedGoogle Scholar
  67. Perez-Jimenez JR, DeFraia C, Young LY (2005) Arsenate respiratory reductase gene (arrA) for Desulfosporosinus sp. strain Y5. Biochem Biophys Res Commun 338:825–829. doi: 10.1016/j.bbrc.2005.10.011 PubMedGoogle Scholar
  68. Pott WA, Benjamin SA, Yang RS (2001) Pharmacokinetics, metabolism, and carcinogenicity of arsenic. Rev Environ Contam Toxicol 169:165–214PubMedGoogle Scholar
  69. Prithivirajsingh S, Mishra SK, Mahadevan A (2001a) Detection and analysis of chromosomal arsenic resistance in Pseudomonas fluorescens strain MSP3. Biochem Biophys Res Commun 280:1393–1401. doi: 10.1006/bbrc.2001.4287 PubMedGoogle Scholar
  70. Prithivirajsingh S, Mishra SK, Mahadevan A (2001b) Functional analysis of a chromosomal arsenic resistance operon in Pseudomonas fluorescens strain MSP3. Mol Biol Rep 28:63–72. doi: 10.1023/A:1017950207981 PubMedGoogle Scholar
  71. Qin J, Rosen BP, Zhang Y, Wang G, Franke S, Rensing C (2006) Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. Proc Natl Acad Sci USA 103:2075–2080. doi: 10.1073/pnas.0506836103 PubMedGoogle Scholar
  72. Quinn JP, McMullan G (1995) Carbon-arsenic bond cleavage by a newly isolated gram-negative bacterium, strain ASV2. Microbiology 141:721–725PubMedCrossRefGoogle Scholar
  73. Ramirez-Solis A, Mukopadhyay R, Rosen BP, Stemmler TL (2004) Experimental and theoretical characterization of arsenite in water: insights into the coordination environment of As-O. Inorg Chem 43:2954–2959. doi: 10.1021/ic0351592 PubMedGoogle Scholar
  74. Rosen P (1971) Theoretical significance of arsenic as a carcinogen. J Theor Biol 32:425–426. doi: 10.1016/0022-5193(71)90178-0 PubMedGoogle Scholar
  75. Rosen BP (1995) Resistance mechanisms to arsenicals and antimonials. J Basic Clin Physiol Pharmacol 6:251–263PubMedGoogle Scholar
  76. Rosen BP (2002) Biochemistry of arsenic detoxification. FEBS Lett 529:86–92. doi: 10.1016/S0014-5793(02)03186-1 PubMedGoogle Scholar
  77. Rosen P, Liu Z (2008) Transport pathways for arsenic and selenium: a minireview. Environ Int. doi: 10.1016/j.envint.2008.07.023 PubMedGoogle Scholar
  78. Rosenberg H, Gerdes RG, Chegwidden K (1977) Two systems for the uptake of phosphate in Escherichia coli. J Bacteriol 131:505–511PubMedGoogle Scholar
  79. Rugh CL, Senecoff JF, Meagher RB, Merkle SA (1998) Development of transgenic yellow poplar for mercury phytoremediation. Nat Biotechnol 16:925–928. doi: 10.1038/nbt1098-925 PubMedGoogle Scholar
  80. Ruokolainen M, Pantsar-Kallio M, Haapa A, Kairesalo T (2000) Leaching, runoff and speciation of arsenic in a laboratory mesocosm. Sci Total Environ 258:139–147. doi: 10.1016/S0048-9697(00)00521-0 PubMedGoogle Scholar
  81. Santini JM, vanden Hoven RN (2004) Molybdenum-containing arsenite oxidase of the chemolithoautotrophic arsenite oxidizer NT-26. J Bacteriol 186:1614–1619. doi: 10.1128/JB.186.6.1614-1619.2004 PubMedGoogle Scholar
  82. Santini JM, Sly LI, Schnagl RD, Macy JM (2000) A new chemolithoautotrophic arsenite-oxidizing bacterium isolated from a gold mine: phylogenetic, physiological, and preliminary biochemical studies. Appl Environ Microbiol 66:92–97PubMedGoogle Scholar
  83. Sauge-Merle S, Cuine S, Carrier P, Lecomte-Pradines C, Luu DT, Peltier G (2003) Enhanced toxic metal accumulation in engineered bacterial cells expressing Arabidopsis thaliana phytochelatin synthase. Appl Environ Microbiol 69:490–494. doi: 10.1128/AEM.69.1.490-494.2003 PubMedGoogle Scholar
  84. Schmoger ME, Oven M, Grill E (2000) Detoxification of arsenic by phytochelatins in plants. Plant Physiol 122:793–801. doi: 10.1104/pp.122.3.793 PubMedGoogle Scholar
  85. Senn DB, Hemond HF (2002) Nitrate controls on iron and arsenic in an urban lake. Science 296:2373–2376. doi: 10.1126/science.1072402 PubMedGoogle Scholar
  86. Shariatpanahi M, Anderson AC, Abdelghani AA, Englande AJ, Hughes J, Wilkinson RF (1981) Biotransformation of the pesticide sodium arsenate. J Environ Sci Health B 16:35–47PubMedGoogle Scholar
  87. Silver S (1998) Genes for all metals-a bacterial view of the periodic table. The 1996 Thom Award Lecture. J Ind Microbiol Biotechnol 20:1–12PubMedGoogle Scholar
  88. Silver S, Misra TK (1984) Bacterial transformations of and resistances to heavy metals. Basic Life Sci 28:23–46PubMedGoogle Scholar
  89. Silver S, Phung LT (1996) Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol 50:753–789. doi: 10.1146/annurev.micro.50.1.753 PubMedGoogle Scholar
  90. Silver S, Phung LT (2005) Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Appl Environ Microbiol 71:599–608. doi: 10.1128/AEM.71.2.599-608.2005 PubMedGoogle Scholar
  91. Singh N, Kumar D, Sahu AP (2007) Arsenic in the environment: effects on human health and possible prevention. J Environ Biol 28:359–365PubMedGoogle Scholar
  92. Singh S, Mulchandani A, Chen W (2008) Highly selective and rapid arsenic removal by metabolically engineered Escherichia coli cells expressing Fucus vesiculosus metallothionein. Appl Environ Microbiol 74:2924–2927PubMedGoogle Scholar
  93. Smith AH, Lopipero PA, Bates MN, Steinmaus CM (2002) Arsenic epidemiology and drinking water standards. Science 296:2145–2146. doi: 10.1126/science.1072896 PubMedGoogle Scholar
  94. Stolz JF, Oremland RS (1999) Bacterial respiration of arsenic and selenium. FEMS Microbiol Rev 23:615–627. doi: 10.1111/j.1574-6976.1999.tb00416.x PubMedGoogle Scholar
  95. Stolz JF, Ellis DJ, Blum JS, Ahmann D, Lovley DR, Oremland RS (1999) Sulfurospirillum barnesii sp. nov. and Sulfurospirillum arsenophilum sp. nov., new members of the Sulfurospirillum clade of the epsilon Proteobacteria. Int J Syst Bacteriol 49:1177–1180PubMedCrossRefGoogle Scholar
  96. Stolz JF, Basu P, Santini JM, Oremland RS (2006) Arsenic and selenium in microbial metabolism. Annu Rev Microbiol 60:107–130. doi: 10.1146/annurev.micro.60.080805.142053 PubMedGoogle Scholar
  97. Stupperich E (1993) Recent advances in elucidation of biological corrinoid functions. FEMS Microbiol Rev 12:349–365. doi: 10.1111/j.1574-6976.1993.tb00027.x PubMedGoogle Scholar
  98. Suzuki K, Wakao N, Sakurai Y, Kimura T, Sakka K, Ohmiya K (1997) Transformation of Escherichia coli with a large plasmid of Acidiphilium multivorum AIU 301 encoding arsenic resistance. Appl Environ Microbiol 63:2089–2091PubMedGoogle Scholar
  99. Suzuki K, Wakao N, Kimura T, Sakka K, Ohmiya K (1998) Expression and regulation of the arsenic resistance operon of Acidiphilium multivorum AIU 301 plasmid pKW301 in Escherichia coli. Appl Environ Microbiol 64:411–418PubMedGoogle Scholar
  100. Switzer Blum J, Burns Bindi A, Buzzelli J, Stolz JF, Oremland RS (1998) Bacillus arsenicoselenatis, sp. nov., and Bacillus selenitireducens, sp. nov.: two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic. Arch Microbiol 171:19–30. doi: 10.1007/s002030050673 PubMedGoogle Scholar
  101. Takai K, Hirayama H, Sakihama Y, Inagaki F, Yamato Y, Horikoshi K (2002) Isolation and metabolic characteristics of previously uncultured members of the order Aquificales in a subsurface gold mine. Appl Environ Microbiol 68:3046–3054. doi: 10.1128/AEM.68.6.3046-3054.2002 PubMedGoogle Scholar
  102. Tamaki S, Frankenberger WT Jr (1992) Environmental biochemistry of arsenic. Rev Environ Contam Toxicol 124:79–110PubMedGoogle Scholar
  103. Turpeinen R, Pantsar-Kallio M, Kairesalo T (2002) Role of microbes in controlling the speciation of arsenic and production of arsines in contaminated soils. Sci Total Environ 285:133–145. doi: 10.1016/S0048-9697(01)00903-2 PubMedGoogle Scholar
  104. vanden Hoven RN, Santini JM (2004) Arsenite oxidation by the heterotroph Hydrogenophaga sp. str. NT-14: the arsenite oxidase and its physiological electron acceptor. Biochim Biophys Acta 1656:148–155Google Scholar
  105. Vorontsov II et al (2007) Crystal structure of an apo form of Shigella flexneri ArsH protein with an NADPH-dependent FMN reductase activity. Protein Sci 16:2483–2490PubMedGoogle Scholar
  106. Weeger W et al (1999) Oxidation of arsenite to arsenate by a bacterium isolated from an aquatic environment. Biometals 12:141–149PubMedGoogle Scholar
  107. Willsky GR, Malamy MH (1980) Characterization of two genetically separable inorganic phosphate transport systems in Escherichia coli. J Bacteriol 144:356–365PubMedGoogle Scholar
  108. Wu J, Rosen BP (1993) Metalloregulated expression of the ars operon. J Biol Chem 268:52–58PubMedGoogle Scholar
  109. Xu C, Zhou T, Kuroda M, Rosen BP (1998) Metalloid resistance mechanisms in prokaryotes. J Biochem (Tokyo) 123:16–23Google Scholar
  110. Yamanaka K, Ohba H, Hasegawa A, Sawamura R, Okada S (1989) Mutagenicity of dimethylated metabolites of inorganic arsenics. Chem Pharm Bull (Tokyo) 37:2753–2756Google Scholar
  111. Yamanaka K et al (1997) Metabolic methylation is a possible genotoxicity-enhancing process of inorganic arsenics. Mutat Res 394:95–101PubMedGoogle Scholar
  112. Yamauchi H, Kaise T, Takahashi K, Yamamura Y (1990) Toxicity and metabolism of trimethylarsine in mice and hamsters. Fundam Appl Toxicol 14:399–407PubMedGoogle Scholar
  113. Ye J, Yang HC, Rosen BP, Bhattacharjee H (2007) Crystal structure of the flavoprotein ArsH from Sinorhizobium meliloti. FEBS Lett 581:3996–4000PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • David Páez-Espino
    • 1
  • Javier Tamames
    • 2
  • Víctor de Lorenzo
    • 1
  • David Cánovas
    • 3
  1. 1.Centro Nacional de Biotecnologia CSICCampus de CantoblancoMadridSpain
  2. 2.Institut Cavanilles de Biodiversitat i Biologia EvolutivaUniversity of ValenciaValenciaSpain
  3. 3.Departamento de Genética, Facultad de BiologíaUniversidad de SevillaSevillaSpain

Personalised recommendations