, 22:225 | Cite as

Arousing sleeping genes: shifts in secondary metabolism of metal tolerant actinobacteria under conditions of heavy metal stress

  • Götz Haferburg
  • Ingrid Groth
  • Ute Möllmann
  • Erika Kothe
  • Isabel Sattler


Numerous microbial habitats are strongly influenced by elevated levels of heavy metals. This type of habitat has developed either due to ore mining and metal processing or by pedogenesis above metal-rich base rocks. Most actinobacteria are soil-borne microbes with a remarkable capability for the synthesis of a broad variety of biologically active secondary metabolites. One major obstacle in identifying secondary metabolites, however, is the known phenomenon of sleeping gene clusters which are present, but silent under standard screening conditions. Here, we proceed to show that sleeping gene clusters can be awakened by the induction in heavy metal stress. Both, a chemical and a biological screening with extracts of supernatant and biomass of 10 strains derived from metal contaminated and non-contaminated environments was carried out to assay the influence of heavy metals on secondary metabolite patterns of metal tolerant actinobacteria. Metabolite patterns of cultures grown in complex and minimal media were compared to nickel (or cadmium) spiked parallels. Extracts of some strains grown in the presence of a metal salt displayed intense antibiosis against Escherichia coli, Mycobacterium smegmatis, Staphylococcus aureus and Candida albicans. Contrarily to the widely held opinion of metals as hindrance in secondary metabolism, metals thus can induce or enhance synthesis of possibly potent and medically relevant metabolites in metal tolerant strains. Hence, re-screening of existing strain libraries as well as identification of new strains from contaminated areas are valid strategies for the detection of new antibiotics in the future.


Actinobacteria Antibiosis Heavy metal Screening program Secondary metabolism 



The authors are indebted to Christiane Weigel, Ulrike Valentin and Petra Mitscherlich for technical assistance.


  1. Amoroso MJ, Schubert D, Mitscherlich P, Schumann P, Kothe E (2000) Evidence for high affinity nickel transporter genes in heavy metal resistant Streptomyces spec. J Basic Microbiol 40:295–301. doi :10.1002/1521-4028(200012)40:5/6<295::AID-JOBM295>3.0.CO;2-Z PubMedCrossRefGoogle Scholar
  2. Beausejour J, Beaulieu C (2004) Characterization of Streptomyces scabies mutants deficient in melanin biosynthesis. Can J Microbiol 50:705–709. doi: 10.1139/w04-043 PubMedCrossRefGoogle Scholar
  3. Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD et al (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147. doi: 10.1038/417141a PubMedCrossRefGoogle Scholar
  4. Berdy J (2005) Bioactive microbial metabolites. A personal view. J Antibiot 58:1–26PubMedCrossRefGoogle Scholar
  5. Bull AT, Ward AC, Goodfellow M (2000) Search and discovery strategies for biotechnology: the paradigm shift. Microbiol Mol Biol Rev 64:573–606. doi: 10.1128/MMBR.64.3.573-606.2000 PubMedCrossRefGoogle Scholar
  6. Choi BK, Paster BJ, Dewhirst FE, Gobel UB (1994) Diversity of cultivable and uncultivable oral spirochetes from a patient with severe destructive periodontitis. Infect Immun 62:1889–1895PubMedGoogle Scholar
  7. Claridge CA, Rossomano VZ, Buono NS, Gourevitch A, Lein J (1966) Influence of cobalt on fermentative methylation. Appl Microbiol 14:280–283PubMedGoogle Scholar
  8. Coisne S, Bechet M, Blondeau R (1999) Actinorhodin production by Streptomyces coelicolor A3(2) in iron-restricted media. Lett Appl Microbiol 28:199–202. doi: 10.1046/j.1365-2672.1999.00509.x PubMedCrossRefGoogle Scholar
  9. Demain AL, Fang A (2000) The natural functions of secondary metabolites. Adv Biochem Eng Biotechnol 69:1–39PubMedGoogle Scholar
  10. Donadio S, Monciardini P, Alduina R, Mazza P, Chiocchini C, Cavaletti L et al (2002) Microbial technologies for the discovery of novel bioactive metabolites. J Biotechnol 99:187–198. doi: 10.1016/S0168-1656(02)00209-2 PubMedCrossRefGoogle Scholar
  11. Duxbury T (1981) Toxicity of heavy metals to soil bacteria. FEMS Microbiol Lett 11:217–220. doi: 10.1111/j.1574-6968.1981.tb06967.x CrossRefGoogle Scholar
  12. Gräfe U, Radics L (1986) Isolation and structure elucidation of 6-(3′-methylbuten-2′-yl)isatin, an unusual metabolite from Streptomyces albus. J Antibiot 39:162–163PubMedGoogle Scholar
  13. Hery M, Nazaret S, Jaffre T, Normand P, Navarro E (2003) Adaptation to nickel spiking of bacterial communities in neocaledonian soils. Environ Microbiol 5:3–12. doi: 10.1046/j.1462-2920.2003.00380.x PubMedCrossRefGoogle Scholar
  14. Hill DC, Wrigkey SK, Nisbet LJ (1998) Novel screen methodologies for identification of new microbial metabolites with pharmacological activity. Adv Biochem Eng Biotechnol 59:75–121Google Scholar
  15. Hopwood DA (2006) News feature: a call to arms. Nat Rev Drug Discov 6:8–12Google Scholar
  16. Iwai Y, Omura S (1982) Culture conditions for screening of new antibiotics. J Antibiot 35:123–141PubMedGoogle Scholar
  17. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Preparation and analysis of genomic and plasmid DNA. In: Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (eds) Practical Streptomyces genetics. The John Innes Foundation, Norwich, pp 161–210Google Scholar
  18. Kruckeberg AR (1984) California serpentines flora, vegetation, geology, soils and management problems. University of California Press, Berkeley, Publications in Botany, vol 78, pp 1–180Google Scholar
  19. Lefèbvre C, Vernet P (1990) Microevolutionary processes on contaminated deposits. In: Shaw AJ (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC Press, Boca Raton, pp 286–297Google Scholar
  20. Mengoni A, Barzanti R, Gonnelli C, Gabbrielli R, Bazzicalupo M (2001) Characterization of nickel-resistant bacteria isolated from serpentine soil. Environ Microbiol 3:691–698. doi: 10.1046/j.1462-2920.2001.00243.x PubMedCrossRefGoogle Scholar
  21. Nisbet LJ, Moore M (1997) Will natural products remain an important source of drug research for the future? Curr Opin Biotechnol 8:708–712. doi: 10.1016/S0958-1669(97)80124-3 PubMedCrossRefGoogle Scholar
  22. Omura S, Ikeda H, Ishikawa J, Hanamoto A, Takahashi C, Shinose M et al (2001) Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites. Proc Natl Acad Sci USA 98:12215–12220. doi: 10.1073/pnas.211433198 PubMedCrossRefGoogle Scholar
  23. Saintpierre D, Amir H, Pineau R, Sembiring L, Goodfellow M (2003) Streptomyces yatensis sp. nov., a novel bioactive streptomycete isolated from a New-Caledonian ultramafic soil. Antonie Van Leeuwenhoek 83:21–26. doi: 10.1023/A:1022906325397 PubMedCrossRefGoogle Scholar
  24. Sanglier JJ, Haag H, Huck TA, Fehr T (1993) Novel bioactive compounds from Actinomycetes: a short review (1988–1992). Res Microbiol 144:633–642. doi: 10.1016/0923-2508(93)90066-B PubMedCrossRefGoogle Scholar
  25. Schmidt A, Haferburg G, Sineriz M, Merten D, Büchel G, Kothe E (2005) Heavy metal resistance mechanisms in actinobacteria for survival in AMD contaminated soils. Chem Erde 65:131–144. doi: 10.1016/j.chemer.2005.06.006 CrossRefGoogle Scholar
  26. Sprocati AR, Alisi C, Segre L, Tasso F, Galletti M, Cremisini C (2006) Investigating heavy metal resistance, bioaccumulation and metabolic profile of a metallophile microbial consortium native to an abandoned mine. Sci Total Environ 366:649–658. doi: 10.1016/j.scitotenv.2006.01.025 PubMedCrossRefGoogle Scholar
  27. Thiemann JE, Beretta G (1968) A new genus of the Actinoplanaceae: Planobispora gen. nov. Arch Microbiol 62:157–166. doi: 10.1007/BF00410402 Google Scholar
  28. Trevors JT, Oddie KM, Belliveau BH (1985) Metal resistance in bacteria. FEMS Microbiol Rev 32:39–54. doi: 10.1111/j.1574-6968.1985.tb01181.x CrossRefGoogle Scholar
  29. Vining LC (1990) Functions of secondary metabolites. Annu Rev Microbiol 44:395–427. doi: 10.1146/annurev.mi.44.100190.002143 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Götz Haferburg
    • 1
  • Ingrid Groth
    • 2
  • Ute Möllmann
    • 2
  • Erika Kothe
    • 1
  • Isabel Sattler
    • 2
  1. 1.Institute of MicrobiologyFriedrich-Schiller University JenaJenaGermany
  2. 2.Leibniz Institute for Natural Product Research and Infection Biology e.V./Hans-Knöll-Institute (HKI)JenaGermany

Personalised recommendations