BioMetals

, Volume 21, Issue 3, pp 273–276 | Cite as

Non-transferrin-bound iron in plasma following administration of oral iron drugs

  • Bernd Dresow
  • Doerte Petersen
  • Roland Fischer
  • Peter Nielsen
Article

Abstract

Non-transferrin-bound iron (NTBI) was detected in serum samples from volunteers with normal iron stores or from patients with iron deficiency anaemia after oral application of pharmaceutical iron preparations. Following a 100 mg ferrous iron dosage, NTBI values up to 9 μM were found within the time period of 1–4 h after administration whereas transferrin saturation was clearly below 100%. Smaller iron dosages (10 and 30 mg) gave lower but still measurable NTBI values. The physiological relevance of this finding for patients under iron medication has to be elucidated.

Keywords

Non-transferrin-bound iron—NTBI Oral iron drugs Transferrin saturation Iron medication Risk factor 

References

  1. Bradley SJ, Gosriwitana I, Srichairatanakoof S, Hider RC, Porter JB (1997) Non-transferrin-bound iron induced by myeloablative chemotherapy. Br J Haematol 99:337–343PubMedCrossRefGoogle Scholar
  2. Breuer W, Herschko C, Cabantchik ZI (2000) The importance of non-transferrin-bound iron in disorders of iron metabolism. Transfus Sci 23:185–192PubMedCrossRefGoogle Scholar
  3. Dresow B, Albert C, Zimmermann I, Nielsen P (1995) Ethane exhalation and Vitamin-E/ubiquinol-status as markers of lipid peroxidation in ferrocene iron-loaded rats. Hepatology 21:1099–1105PubMedCrossRefGoogle Scholar
  4. Dürken M, Nielsen P, Knobel S, Finckh B, Herrnring C, Dresow B, Kohischütter B, Stockschläger M, Krüger WH, Kohlschütter A, Zander AR (1997) Nontransferrin-bound iron in serum of patients receiving bone marrow transplantation. Free Radical Biol Med 22:1159–1163CrossRefGoogle Scholar
  5. Erichsen K, Ulvik RJ, Grimstad T, Berstad A, Berge RK, Hausken T (2005) Effects of ferrous sulphate and non-ionic iron-polymaltose complex on markers of oxidative tissue damage in patients with inflammatory bowel disease. Aliment Pharmacol Ther 22:831–838PubMedCrossRefGoogle Scholar
  6. Esposito BP, Breuer W, Sirankapracha P, Pootrakul P, Hershko C, Cabantchik ZI (2003) Labile plasma iron in iron overload: redox activity and susceptibility to chelation. Blood 102:2670–2677PubMedCrossRefGoogle Scholar
  7. Gabbe EE, Heinrich HC, Icagic F (1982) Proposal for the standardization of the serum unsaturated iron binding capacity assay, and results in groups of subjects with normal iron stores and with prelatent, latent, and manifest iron deficiency. Clin Chim Acta 119:51–63PubMedCrossRefGoogle Scholar
  8. Gosriwatana I, Loréal O, Lu S, Brissot P, Porter J, Hider RC (1999) Quantification of non-transferrin-bound iron in the presence of unsaturated transferrin. Anal Biochem 273:212–220PubMedCrossRefGoogle Scholar
  9. Gutteridge JMC, Rowley DA, Griffiths E, Halliwell B (1985) Low-molecular-weight iron complexes and oxygen radical reactions in idiopathic haemochromatosis. Clin Sci 68:463–467PubMedGoogle Scholar
  10. Halliwell B, Gutteridge JMC (1986) Oxygen, free radicals and iron in relation to biology and medicine: some problems and concepts. Arch Biochem Biophys 246:501–514PubMedCrossRefGoogle Scholar
  11. Halliwell B, Gutteridge JMC (1990) Role of free radicals and catalytic metal ions in human disease: an overview. Meth Enzymol 186:1–85PubMedCrossRefGoogle Scholar
  12. Hershko C, Graham G, Bates GW, Rachmilewitz EA (1978) Non-specific serum iron in thalassaemia: an abnormal serum iron fraction of potential toxicity. Br J Haematol 40:255–263PubMedCrossRefGoogle Scholar
  13. Lachili B, Hininger I, Faure H, Arnaud J, Richard MJ, Favier A, Roussel AM (2001) Increased lipid peroxidation in pregnant women after iron and vitamin C supplementation. Biol Trace Element Res 83:103–110CrossRefGoogle Scholar
  14. Lee DH, Liu DY, Jakobs DR, Shin H-R, Song K, Lee IK, Kim B, Hider RC (2006) Common presence of non-transferrin-bound iron among patients with type 2 diabetes. Diabetes Care 29:1090–1095PubMedCrossRefGoogle Scholar
  15. Nielsen P, Gabbe EE, Fischer R, Heinrich HC (1994) Bioavailability of iron from oral ferric polymaltose in humans. Arzneim Forsch 44:743–748Google Scholar
  16. Rehema A, Zilmer K, Klaar U, Karro H, Kullisaar T, Zilmer M (2004) Ferrous iron administration during pregnancy and adaptional oxidative stress (pilot study). Medicina 40:547–552PubMedGoogle Scholar
  17. Roob JM, Khoschsorur G, Tiran A, Horina JH, Holzer H, Winkelhofer-Roob BM (2000) Vitamin E attenuates oxidative stress induced by intravenous iron in patients on hemodialysis. J Am Soc Nephrol 11:539–549PubMedGoogle Scholar
  18. Scheiber-Mojdehkar B, Lutzky B, Schaufler R, Sturm B, Goldenberg H (2004) Non-transferrin-bound iron in the serum of hemodialysis patients who receive ferric sacharate: no correlation to peroxide generation. J Am Soc Nephrol 15:1648–1655PubMedCrossRefGoogle Scholar
  19. Schümann K, Kroll S, Weiss G, Frank J, Biesalski HK, Daniel H, Friel J, Solomons NW (2005) Monitoring of hematological, inflammatory and oxidative reactions to acute oral iron exposure in human volunteers: preliminary screening for selection of potentially-responsive biomarkers. Toxicology 212:10–23PubMedCrossRefGoogle Scholar
  20. Singh S, Hider RC, Porter JB (1990) A direct method for quantitation of non-transferrin-bound iron. Anal Biochem 186:320–323PubMedCrossRefGoogle Scholar
  21. van Campenhout A, van Campenhout C, Lagrow A, Manuel-y-Keenoy B (2007) Iron-induced oxidative stress in haemodialysis patients: a pilot study on the impact of diabetes. Biometals onlineGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2007

Authors and Affiliations

  • Bernd Dresow
    • 1
  • Doerte Petersen
    • 1
  • Roland Fischer
    • 1
  • Peter Nielsen
    • 1
  1. 1.Inst. für Biochemie und Molekularbiologie II: Molekulare ZellbiologieZentrum für Experimentelle Medizin Universitätsklinikum Hamburg-EppendorfHamburgGermany

Personalised recommendations