Advertisement

BioMetals

, 20:379 | Cite as

Ecology of siderophores with special reference to the fungi

  • Günther Winkelmann
Article

Abstract

Ecology of siderophores, as described in the present review, analyzes the factors that allow the production and function of siderophores under various environmental conditions. Microorganisms that excrete siderophores are able to grow in natural low-iron environments by extracting residual iron from insoluble iron hydroxides, protein-bound iron or from other iron chelates. Compared to the predominantly mobile bacteria, the fungi represent mostly immobile microorganisms that rely on local nutrient concentrations. Feeding the immobile is a general strategy of fungi and plants, which depend on the local nutrient resources. This also applies to iron nutrition, which can be improved by excretion of siderophores. Most fungi produce a variety of different siderophores, which cover a wide range of physico-chemical properties in order to overcome adverse local conditions of iron solubility. Resource zones will be temporally and spatially dynamic which eventually results in conidiospore production, transport to new places and outgrow of mycelia from conidiospores. Typically, extracellular and intracellular siderophores exist in fungi which function either in transport or storage of ferric iron. Consequently, extracelluar and intracellular reduction of siderophores may occur depending on the fungal strain, although in most fungi transport of the intact siderophore iron complex has been observed. Regulation of siderophore biosynthesis is essential in fungi and allows an economic use of siderophores and metabolic resources. Finally, the chemical stability of fungal siderophores is an important aspect of microbial life in soil and in the rhizosphere. Thus, insolubility of iron in the environment is counteracted by dissolution and chelation through organic acids and siderophores by various fungi.

Keywords

Iron Siderophores Fungi Yeast Mycorrhiza Ecology 

References

  1. An Z, Mei B, Yuan WM, Leong SA (1997) The distal GATA sequences of the sid1 promotor of Ustilago maydis mediate iron repression of siderophore production and interact directly with Urbs1, a GATA family transcription factor. Embo J 16:1742–1750CrossRefPubMedGoogle Scholar
  2. Anke H, Kinn J, Bergquist K-E, Sterner O (1992) Production of siderophores by strains of the genus Trichoderma. BioMetals 4:176–180Google Scholar
  3. Ardon O, Nudelman R, Caris C, Libman J, Shanzer A, Chen Y, Hadar Y (1998) Iron uptake in Ustilago maydis: tracking the iron path. J Bacteriol 180:2021–2026PubMedGoogle Scholar
  4. Bar-Ness E, Chen Y, Hadar Y, Marschner H, Römheld V (1991) Siderophores of Pseudomonas putida as an iron source for dicot and monocot plants. Plant Soil 130:231–241CrossRefGoogle Scholar
  5. Bar-Ness E, Hadar Y, Chen Y, Römheld V, Marschner H (1992) Short-term effects of rhizosphere microorganisms on Fe uptake from microbial siderophores by maize and oat. Plant Physiol 100:451–456CrossRefPubMedGoogle Scholar
  6. Brüggemann W, Maas-Kantel K, Mog PR (1993) Iron uptake by leaf mesophyll cell: The role of the plasma membrane-bound ferric chelate reductase. Planta 190:151–155CrossRefGoogle Scholar
  7. Butler A (2005) Marine siderophores and microbial iron metabolism. BioMetals 18:369–374CrossRefPubMedGoogle Scholar
  8. Charlang G, Bradford NG, Horowitz NH, Horowitz RM (1981) Cellular and extracellular siderophores of Aspergillus nidulans and Penicillium chrysogenum. Mol Cell Biol 1:94–100PubMedGoogle Scholar
  9. Cline GR, Reid CPP, Powell P, Szaniszlo PJ (1984) Effects of a hydroxamate siderophore on iron absorption by Sunflower and Sorghum. Plant Physiol 76:36–39CrossRefPubMedGoogle Scholar
  10. Cornelissen CN, Sparling PF (2004) Neisseria. In: Crosa JH, Mei AR, Payne SM, (eds) Iron Transport in Bacteria. ASM Press, Washington DC, pp 256–272Google Scholar
  11. Crosa JH, Mey AR, Payne SM (eds) (2004) Iron transport in bacteria. ASM Press Washington DCGoogle Scholar
  12. Dancis A, Roman DG, Anderson GJ, Hinnebusch AG, Klausner RD (1992) Ferric reductase of Saccharomyces cerevisiae: Molecular characterization, role in iron uptake, and transcriptional control by iron. Proc Natl Acad Sci (USA) 89:3869–3873CrossRefGoogle Scholar
  13. De Lorenzo V, Martin JP, Escolar L, Pesole G, Bertoni G (2004) Mode of binding of the Fur protein to target DNA: Negative regulation of iron-controled gene expression. In: Crosa JH, Mei AR, Payne SM (eds) Iron Transport in Bacteria. ASM Press, Washington DC, pp 185–196Google Scholar
  14. Diekmann H, Krezdorn E (1975) Stoffwechselprodukte von Mikroorganismen. 150 Mitteilung. Ferricrocin, Triacetylfusigen und andere Sideramine aus Pilzen der Gattung Aspergillus, Gruppe Fumigatus. Arch Microbiol 106:191–194CrossRefPubMedGoogle Scholar
  15. Drechsel H, Winkelmann G (1997) Iron chelation and siderophores. In: Winkelmann G, Carrano CJ (eds), Transition Metals in Microbial Metabolism. Harwood Acadmic Publishers, Amsterdam, pp 1–49Google Scholar
  16. Ecker DJ, Lancaster JR, Emery T (1982) Siderophore iron transport followed by electron paramagnetic resonance spectroscopy. J Biol Chem 257:8623–8626PubMedGoogle Scholar
  17. Eide DJ, Clark S, Nair TM, Gehl M, Gribskov M, Guerinot ML, Harper JF (2005) Characterization of the yeast ionome: a genome-wide analysis of nutrient mineral and trace element homeostasis in Saccharmyces cerevisiae. Genome Biology 6, R77 Open AccessGoogle Scholar
  18. Eisendle M, Oberegger H, Zadra I, Haas H (2003) The siderophore system is essential for viability of Aspergillus nidulans: functional analysis of two genes encoding L-ornithine-N 5-monooxigenase (SidA) and a non-ribosomal peptide synthetase (sidC). Mol Microbiol 49:359–375CrossRefPubMedGoogle Scholar
  19. Eisendle M, Oberegger H, Buttinger R, Illmer P, Haas H (2004) Biosynthesis and uptake of siderophores is controlled by the PacC-mediated ambient-pH regulatory system in Aspergillus nidulans. Eukaryotic Cell 3:561–563CrossRefPubMedGoogle Scholar
  20. Emery T (1987) Reductive mechanisms of iron assimilation. In Winkelmann G, van der Helm D, Neilands JB (eds), Iron Transport in Microbes, Plants and Animals. VCH Verlagsgesellschaft, Weinheim, pp 235–250Google Scholar
  21. Ernst JF, Bennet RL, Rothfield LI (1978) Cunstitutive expression if the iron-enterochelin and ferrichrome uptake systems in a mutant strain of Salmonella typhimurium. J Bacteriol 135:928–934PubMedGoogle Scholar
  22. Essén SA, Bylund D, Holmström SJM, Moberg M, Lundström US (2006) Quantification of hydroxamate siderophores in soil solutions of podzolic soil profiles in Sweden. BioMetals 19:269–282CrossRefPubMedGoogle Scholar
  23. Fernandéz V, Winkelmann G, Ebert G (2004) Iron supply to tabacco plants through foliar application of iron citrate and ferric dimerum acid. Physiologia Plantarum 122:380–385CrossRefGoogle Scholar
  24. Fernandéz V, Ebert G, Winkelmann G 2005. The use of microbial siderophores for foliar iron application studies. Plant Soil 272:245–252CrossRefGoogle Scholar
  25. Haas H, Angermayr K, Stoffler G (1997) Molecular analyis of a Penicillium chrysogenum GATA factor encoding gene (sreP) exhibiting significant homology to the Ustilago maydis urbs1 gene. Gene 184:33–37CrossRefPubMedGoogle Scholar
  26. Haas H, Zadra I, Stöffler G, Angermeyer K (1999) The Aspergillus nidulans GATA factor SREA is involved in regulation of siderophore biosynthesis and control of iron uptake. J Biol Chem 274:4613–4619CrossRefPubMedGoogle Scholar
  27. Haas H (2003) Molecular genetics of fungal siderophore biosynthesis and uptake: the role of siderophores in iron uptake and storage. Appl Microbiol Biotechnol 62:316–330CrossRefPubMedGoogle Scholar
  28. Hantke K (1984) Cloning of the repressor protein gene of iron regulated systems in E. coli K12. Mol Gen Genet 197:337–341CrossRefPubMedGoogle Scholar
  29. Haselwandter K, Dobernigg B, Beck W, Jung G, Cansier A, Winkelmann G (1992) Isolation and identification of hydroxamate siderophores of ericoid mycorrhizal fungi. BioMetals 5:51–56CrossRefGoogle Scholar
  30. Haselwandter K, Winkelmann G (1998) Identification and characterization of siderophores of mycorrhizal fungi. In: Varma A (ed) Mycorrhiza Manual. Berlin, Springer-Verlag, pp 243–254Google Scholar
  31. Haselwandter K, Winkelmann G (2002) Ferricrocin—an ectomycorrhizal siderophore of Cenococcum geophilum. BioMetals 15:73–77CrossRefPubMedGoogle Scholar
  32. Haselwandter K, Passler V, Reiter S, Schmid DG, Nicholson G, Hentschel P, Albert K, Winkelmann G (2006) Basidiochrome—a novel siderophore of the orchidaceous mycorrhizal fungi Ceratobasidium and Rhizoctonia spp. BioMetals 19:335–343CrossRefPubMedGoogle Scholar
  33. Hesseltine CW, Pidacks C, Whitehill AR, Bohonos N, Hutchings BL, Williams JH (1952) Coprogen, e new groth factor for coprophilic fungi. J Am Chem Soc 74:1362–1363CrossRefGoogle Scholar
  34. Heymann P, Ernst JF, Winkelmann G.(1999) Identification of a fungal triacetylfusarinine C siderophore transport gene (TAF1) in Saccharomyces cerevisiae as a member of the major facilitator superfamily. BioMetals 12:301–306CrossRefPubMedGoogle Scholar
  35. Heymann P, Ernst JF, Winkelmann G (2000a) A gene of the major facilitator superfamily encodes a transporter for enterobactin (Enb1p) in Saccharomyces cerevisiae. BioMetals 13:65–72CrossRefGoogle Scholar
  36. Heymann P, Ernst JF, Winkelmann G (2000b) Identification and substrate specificity of a ferrichrome-type siderophore transporter (Arn1p) in Saccharomyces cerevisiae. FEMS Microbiol Lett 186:221–227CrossRefGoogle Scholar
  37. Heymann P, Gerads M, Schaller M, Dromer F, Winkelmann G, Ernst J (2002) The siderophore iron transporter of Candida albicans (Sit1p/Arn1p) mediates uptake of ferrichrome-type siderophores and is required for epithelical invasion. Infect Immun 70:5246–5255CrossRefPubMedGoogle Scholar
  38. Hoe KL, Won MS, Yoo OJ, Yoo HS (1996) Molecular cloning of GAF2, a Schizosaccharomyces pombe GATA factor, which has two zinc-finger sequences. Biochem Mol Biol Int 39:127–135PubMedGoogle Scholar
  39. Hördt W, Römheld V, Winkelmann G (2000) Fusarinines and dimerum acid, mono- and dihydroxamate siderophores from Penicillium chrysogenum, improve iron utilisation by strategy I and strategy II plants. BioMetals 13:37–46CrossRefPubMedGoogle Scholar
  40. Horowitz NH, Charlang G, Horn G, Williams NP (1976) Isolation and identification of the conidial germination factor of Neurospora crassa. J Bacteriol 127:135–140PubMedGoogle Scholar
  41. Hu CJ, Bai C, Zheng XD, Wang YM (2002) Characterization and functional analysis of the siderophore-fe transporter CaArn1p in Candida albicans. J Biol Chem 11:11Google Scholar
  42. Jalal MAF, van der Helm D (1981) Isolation and spectroscopic identification of fungal siderophores. In: Winkelmann G (ed), Handbook of Microbial Iron Chelates. Bocca Raton, CRC Press, pp 235–269Google Scholar
  43. Jalal MAF, Morcharla R, Barnes CL, Hossain MB, Powell DR, Eng-Wilmot DL, Grayson SL, Benson BA, van der Helm D (1984) Extracellular siderophores from Aspergillus ochreaceous. J Bacteriol 158:683–688PubMedGoogle Scholar
  44. Jalal MAF, Love SK, van der Helm (1986) Siderophore-mediated iron(III) uptake in Gliocladium virens, 1. Properties of cis-fusarinine, trans-fusarinine, dimerum acid, and their ferric complexes. J Inorg Chem 28:417–430Google Scholar
  45. Kraemer SM (2004) Iron oxide dissolution and solubility in the presence of siderophores. Aquat Sci 66:3–18CrossRefGoogle Scholar
  46. Konetschny-Rapp S, Jung G, Huschka H.-G, Winkelmann G (1988) Isolation and identification of the principal siderophore of the plant pathogenic fungus Botrytis cinerea. BioMetals 1:90–98Google Scholar
  47. Lesuisse E, Raguzzi F, Crichton RR (1987) Iron uptake by the yeast Saccharomyces cerevisiae: involvement of a reduction step. J Gen Microbiol 133:3229PubMedGoogle Scholar
  48. Lesuisse E, Simon-Casteras M, Labbe P (1998) Siderophore-mediated iron uptake in Saccharomyces cerevisiae encodes a ferrioxamine B permease that belongs to the major facilitator superfamily. Microbiology 144:3455–3462CrossRefPubMedGoogle Scholar
  49. Leong SA, Winkelmann G (1998) Molecular biology of iron transport in fungi. Met Ions Biol Syst 35:147–186PubMedGoogle Scholar
  50. Mac Arthur JV (ed) (2006) Microbial ecology. An evolutionary approach. Elsevier, Academic Press Publ. Amsterdam, New YorkGoogle Scholar
  51. Matzanke BF, Bill E, Trautwein AX, Winkelmann G (1987) Role of siderophores in iron storage in spores of Neurospora crassa and Aspergillus ochraceus. J Bacteriol 169:5873–5876PubMedGoogle Scholar
  52. Matzanke BF, Bill E, Trautwein AX, Winkelmann G (1988) Ferricrocin functions as the main intracellular iron-storage compound in mycelia of Neurospora crassa. BioMetals 1:18–25Google Scholar
  53. Mei B, Budde AD, Leong SA (1993) sid1, a gene initiating siderophore biosynthesis in Ustilago maydis: Molecular characterization, regulation by iron, and role in phytopathogenicity. Proc Natl Acad Sci USA 90:903–907CrossRefPubMedGoogle Scholar
  54. Mies KA, Wirgau JL, Crumbliss AL (2006) Ternary complex formation facilitates a redoxmechanism for iron release from a siderophore. BioMetals 19:115–126CrossRefPubMedGoogle Scholar
  55. Monzyk B, Crumbliss AL (1983) Factors that influence siderophore-mediated iron bioavailability: Catalysis of interligand iron(III) transfer from ferrioxamine B to EDTA by hydroxamic acids. I Inorg Biochem 19:19–39CrossRefGoogle Scholar
  56. Mor H, Kashman Y, Winkelmann G, Barash I (1992) Characterization of siderophores produced by different species of the dermatophytic fungi Microsporum and Trichophyton. BioMetals 5:213–216CrossRefGoogle Scholar
  57. Neilands JB (1952) A crystalline organo iron compound from a rust fungus Ustilago spaerogena . J Am Chem Soc 74:4846–4847CrossRefGoogle Scholar
  58. Oberegger H, Schoeser M, Zadra I, Abt B, Haas H (2001) SREA is involved in regulation of siderophore biosynthsis, utilization and uptake in Aspergillus nidulans. Mol Microbiol 41:1077–1089CrossRefPubMedGoogle Scholar
  59. Ong SA, Neilands JB (1979) Siderophores in microbially processed cheese. J Agr Food Chem 27:990–995CrossRefGoogle Scholar
  60. Pelletier B, Beaudoin J, Philpott CC, Labbé S (2003) Fep1 represses expression of the fission yeast Schizosaccharomyces pombe siderophore-iron transport system. Nucleic Acids Res 31:4332–4344CrossRefPubMedGoogle Scholar
  61. Powell PE, Cline GR, Reid CPP, Szaniszlo PJ (1980) Occurrence of hydroxamate siderophore iron in soils. Nature 287:833–834CrossRefGoogle Scholar
  62. Powell PE, Szaniszlo PJ, Cline GR, Reid CPP (1982) Hydroxamate siderophores in the iron nutrition of plants. J Plant Nutr 5:653–673CrossRefGoogle Scholar
  63. Prabhu V, Biolchini PF, Boyer GL (1996) Detection and identification of ferricrocin produced by ectendomycorrhizal fungi in the genus Wilcoxina. BioMetals 9:229–234CrossRefGoogle Scholar
  64. Protchenko O, Ferea T, Rashford J, Tiedeman J, Brown PO, Botstein D, Philpott CC (2001) Three cell wall mannoproteins facilitate the uptake of iron in Saccharomyces cerevisiae. J Biol Chem 276:49244–49250CrossRefPubMedGoogle Scholar
  65. Scazzocchio C (2000) The fungal GATA factors. Curr Opin Microbiol 3:126–131CrossRefPubMedGoogle Scholar
  66. Schrettl M, Winkelmann G, Haas H (2004a) Ferrichrome in Schizosaccharomyces pombe - an iron transport and iron storage compound. BioMetals 17:647–654CrossRefGoogle Scholar
  67. Schrettl M, Bignell E, Kragl C, Joechl C, Rogers T, Arst HN Jr., Haynes K, Haas H (2004b) Siderophore biosynthesis but not reductive iron assimilation is essential for Aspergillus fumigatus virulence. J Exp Med 200:1213–1219CrossRefGoogle Scholar
  68. Szaniszlo PJ, Powell PE, Reid CPP, Cline GR (1981) Production of hydroxamate siderophore iron chelators by ectomycorrhizal fungi. Mycologia 73:1158–1174CrossRefGoogle Scholar
  69. Valdebenito M, Bister B, Reissbrodt R, Hantke K, Winkelmann G (2005) The detecction of salmochelin and yersiniabactin in uropathogenic Escherichia coli strains by a novel hydrolysis–fluorescens-detection method. Int J Med Microbiol 295:99–107CrossRefPubMedGoogle Scholar
  70. Valdebenito M, Crumbliss AL, Winkelmann G, Hantke K (2006) Environmental factors influence the production of enterobactin, salmochelin, aerobactin, and yersiniabactin in Escherichia coli strain Nissle. Int J Med Microbiol (in press)Google Scholar
  71. van der Helm D, Baker JR, Eng-Wilmot DL, Hossain MB, Loghry RA (1980) Crystal structure of ferrichrome and a comparison with the structure of ferrichrome A. J Am Chem Soc 102:4224–4231CrossRefGoogle Scholar
  72. Van der Walt JP, Botha A, Eiker A (1990) Ferrichrome production by Lipomycetaceae. Syst Appl Microbiol 13:131–135Google Scholar
  73. Van Hees PA, Rosling A, Essén S, Godbold DL, Jones DL, Finlay RD (2006) Oxalate and ferricrocin exudation by the extramatrical mycelium of an ectomycorrhizal fungus in symbiosis with Pinus sylvestris. New Phytologist 169:367–378CrossRefPubMedGoogle Scholar
  74. Villavicenio M, Neilands JB (1965) An inducible ferrichrome A-degrading peptidase from pseudomonas FC-1. Biochemistry 4:1092–1097CrossRefGoogle Scholar
  75. Voisard C, Wang J, McEvoy JL, Xu P, Leong SA (1993) Urbs1, a gene regulating siderophore biosynthesis in Ustilago maydis, encodes a protein similar to the erythroid transcription factor GATA-1. Mol Cell Biol 13:7091–7100PubMedGoogle Scholar
  76. Wang J, Budde AD, Leong SA (1989) Analysis of ferrichrome biosynthesis in the phytopathogenic fungus Ustilago maydis: cloning of an ornithine-N 5-oxygenase gene. J Bacteriol 171:2811–2818PubMedGoogle Scholar
  77. Warren RAJ, Neilands JB (1965) Mechanisms of microbial catabolism of ferrichrome A. J Biol Chem 240:2055–2058PubMedGoogle Scholar
  78. Wiebe C, Winkelmann G (1975) Kinetic studies on the specificity of chelate-iron uptake in Aspergillus. J Bacteriol 123:837–842PubMedGoogle Scholar
  79. Winkelmann G, Zähner H 1973. Stoffwechselprodukte von Mikroorganismen. 115. Mitteilung. Eisenaufnahme bei Neurospora crassa I. Zur Spezifität des Eisentransportes. Arch Mikrobiol 88:49–60CrossRefPubMedGoogle Scholar
  80. Winkelmann G (1974) Stoffwechselprodukte von Mikroorganismen. 132. Mitteilung. Uptake of iron by Neurospora crassa. III Iron transport studies with ferrichrome-type compounds. Arch Microbiol 98:39–50CrossRefGoogle Scholar
  81. Winkelmann G (1979) Surface iron polymers and hydroxy acids. A model of iron supply in sideramine-free fungi. Arch Microbiol 121:43–51CrossRefGoogle Scholar
  82. Winkelmann G (1986) Iron Complex Products. In: Rehm HJ, Reed G (eds) Biotechnology 4:215–243Google Scholar
  83. Winkelmann G, Schmidtkunz K, Rainey FA (1996) Characterization of a novel Spirillum-like bacterium that degrades ferrioxamine-type siderophores. BioMetals 9:78–83CrossRefPubMedGoogle Scholar
  84. Winkelmann G, Busch B, Hartmann A, Kirchhof G, Süßmuth R, Jung G (1999) Degradation of desferrioxamines by Azospirillum irakense: Assignment of metabolites by HPLC/electrospray mass spectrometry. BioMetals 12:255–264CrossRefPubMedGoogle Scholar
  85. Winkelmann G, Winge DR (eds) 1994. Metal Ions in Fungi. Marcel Dekker, Inc. Ney York-Basel Hong KongGoogle Scholar
  86. Winkelmann G (2001) Siderophore transport in fungi. In: Winkelmann G (ed), Microbial Transport Systems. Weinheim, Wiley-VCH, pp 463–480CrossRefGoogle Scholar
  87. Winkelmann G (2002) Microbial siderophore-mediated transport. Biochem Soc Trans 30:691–696CrossRefPubMedGoogle Scholar
  88. Winkelmann G (2004) Ecology of Siderophores. In: Crosa JH, Mey AR, Payne SM (eds), Iron Transport in Bacteria. ASM Press, Washington DC, pp 437–450Google Scholar
  89. Yamaguchi-Iwai Y, Dancis A, Klausner RD (1995) AFT1: a mediator of iron regulated transcriptional control in Saccharomyces cerevisiae. EMBO J 14:1231–1239PubMedGoogle Scholar
  90. Yamaguchi-Iwai Y, Stearman R, Dancis A, Klausner RD (1996) Iron-regulated DNA binding by the AFT1 protein controls the iron regulon in yeast. EMBO J 15:3377–3384PubMedGoogle Scholar
  91. Yehuda Z, Shenker M, Römheld V, Marschner H, Hadar Y, Chen Y (1996) The role of ligand exchange in the uptake of iron from microbial siderophore by grammineous plants. Plant Physiol 112:1273–1280PubMedGoogle Scholar
  92. Yun CW, Tiedeman JS, Moore RE, Philpott CC (2000) Siderophore-iron uptake in Saccharomyces cerevisiae. J Biol Chem 275:16354–16359CrossRefPubMedGoogle Scholar
  93. Yun CW, Bauler M, Moore RE, Klebba PE, Philpott CC (2001) The role of the FRE family of plasma membrane reductases in the uptake of siderophore-iron in Saccharomyces cerevisiae. J Biol Chem 276:10218–10223CrossRefPubMedGoogle Scholar
  94. Zähner H, Keller-Schierlein W, Hütter R, Hess-Leisinger K, Deér A (1963) Stoffwechselprodukte von Mikroorganismen 40. Mitteilung. Sideramine aus Aspergillaceen. Arch Microbiol 45:119–135Google Scholar
  95. Zhou LW, Haas H, Marzluf GA (1998) Isolation and characterization of a new gene, sre, which encodes a GATA-type regulatory protein that controls iron transport in Neurospora crassa. Mol Gen Genet 259:532–540CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.Institut für MikrobiologieUniversität TübingenTübingenGermany

Personalised recommendations