, 20:485 | Cite as

Functional specialization within the Fur family of metalloregulators

  • Jin-Won Lee
  • John D. HelmannEmail author


The ferric uptake regulator (Fur) protein, as originally described in Escherichia coli, is an iron-sensing repressor that controls the expression of genes for siderophore biosynthesis and iron transport. Although Fur is commonly thought of as a metal-dependent repressor, Fur also activates the expression of many genes by either indirect or direct mechanisms. In the best studied model systems, Fur functions as a global regulator of iron homeostasis controlling both the induction of iron uptake functions (under iron limitation) and the expression of iron storage proteins and iron-utilizing enzymes (under iron sufficiency). We now appreciate that there is a tremendous diversity in metal selectivity and biological function within the Fur family which includes sensors of iron (Fur), zinc (Zur), manganese (Mur), and nickel (Nur). Despite numerous studies, the mechanism of metal ion sensing by Fur family proteins is still controversial. Other family members use metal catalyzed oxidation reactions to sense peroxide-stress (PerR) or the availability of heme (Irr).


Fur metalloregulation Metal homeostasis 



We thank M. O’Brian and A. van Vliet for helpful comments. Work in our laboratory on metalloregulation is supported by NIH (GM059323) and work on oxidative stress sensors is supported by the NSF.


  1. Abdul-Tehrani H, Hudson AJ, Chang YS et al (1999) Ferritin mutants of Escherichia coli are iron deficient and growth impaired, and fur mutants are iron deficient. J Bacteriol 181:1415–1428PubMedGoogle Scholar
  2. Ahn BE, Cha J, Lee EJ, Han AR, Thompson CJ, Roe JH (2006) Nur, a nickel-responsive regulator of the Fur family, regulates superoxide dismutases and nickel transport in Streptomyces coelicolor. Mol Microbiol 59:1848–1858PubMedCrossRefGoogle Scholar
  3. Akanuma G, Nanamiya H, Natori Y, Nomura N, Kawamura F (2006) Liberation of zinc-containing L31 (RpmE) from ribosomes by its paralogous gene product, YtiA, in Bacillus subtilis. J Bacteriol 188:2715–2720PubMedCrossRefGoogle Scholar
  4. Alamuri P, Mehta N, Burk A, Maier RJ (2006) Regulation of the Helicobacter pylori Fe-S cluster synthesis protein NifS by iron, oxidative stress conditions, and Fur. J Bacteriol 188:5325–5330PubMedCrossRefGoogle Scholar
  5. Althaus EW, Outten CE, Olson KE, Cao H, O’Halloran TV (1999) The ferric uptake regulation (Fur) repressor is a zinc metalloprotein. Biochemistry 38:6559–6569PubMedCrossRefGoogle Scholar
  6. Bagg A, Neilands JB (1987a) Ferric uptake regulation protein acts as a repressor, employing iron (II) as a cofactor to bind the operator of an iron transport operon in Escherichia coli. Biochemistry 26:5471–5477CrossRefGoogle Scholar
  7. Bagg A, Neilands JB (1987b) Molecular mechanism of regulation of siderophore-mediated iron assimilation. Microbiol Rev 51:509–518Google Scholar
  8. Baichoo N, Helmann JD (2002) Recognition of DNA by Fur: a reinterpretation of the Fur box consensus sequence. J Bacteriol 184:5826–5832PubMedCrossRefGoogle Scholar
  9. Baichoo N, Wang T, Ye R, Helmann JD (2002) Global analysis of the Bacillus subtilis Fur regulon and the iron starvation stimulon. Mol Microbiol 45:1613–1629PubMedCrossRefGoogle Scholar
  10. Bellini P, Hemmings AM (2006) In vitro characterization of a bacterial manganese uptake regulator of the fur superfamily. Biochemistry 45:2686–2698PubMedCrossRefGoogle Scholar
  11. Braun V (2003) Iron uptake by Escherichia coli. Front Biosci 8:s1409–s1421PubMedCrossRefGoogle Scholar
  12. Brenot A, King KY, Caparon MG (2005) The PerR regulon in peroxide resistance and virulence of Streptococcus pyogenes. Mol Microbiol 55:221–234PubMedCrossRefGoogle Scholar
  13. Bsat N, Chen L, Helmann JD (1996) Mutation of the Bacillus subtilis alkyl hydroperoxide reductase (ahpCF) operon reveals compensatory interactions among hydrogen peroxide stress genes. J Bacteriol 178:6579–6586PubMedGoogle Scholar
  14. Bsat N, Helmann JD (1999) Interaction of Bacillus subtilis Fur (ferric uptake repressor) with the dhb operator in vitro and in vivo. J Bacteriol 181:4299–4307PubMedGoogle Scholar
  15. Bsat N, Herbig A, Casillas-Martinez L, Setlow P, Helmann JD (1998) Bacillus subtilis contains multiple Fur homologues:identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors. Mol Microbiol 29:189–198PubMedCrossRefGoogle Scholar
  16. Chen L, Helmann JD (1995) Bacillus subtilis MrgA is a Dps(PexB) homologue: evidence for metalloregulation of an oxidative-stress gene. Mol Microbiol 18:295–300PubMedCrossRefGoogle Scholar
  17. Chen L, James LP, Helmann JD (1993) Metalloregulation in Bacillus subtilis: isolation and characterization of two genes differentially repressed by metal ions. J Bacteriol 175:5428–5437PubMedGoogle Scholar
  18. Chen L, Keramati L, Helmann JD (1995) Coordinate regulation of Bacillus subtilis peroxide stress genes by hydrogen peroxide and metal ions. Proc Natl Acad Sci USA 92:8190–8204PubMedCrossRefGoogle Scholar
  19. Coy M, Doyle C, Besser J, Neilands JB (1994) Site-directed mutagenesis of the ferric uptake regulation gene of Escherichia coli. Biometals 7:292–298PubMedCrossRefGoogle Scholar
  20. D’Autreaux B, Touati D, Bersch B, Latour JM, Michaud-Soret I (2002) Direct inhibition by nitric oxide of the transcriptional ferric uptake regulation protein via nitrosylation of the iron. Proc Natl Acad Sci USA 99:16619–16624PubMedCrossRefGoogle Scholar
  21. Delany I, Rappuoli R, Scarlato V (2004) Fur functions as an activator and as a repressor of putative virulence genes in Neisseria meningitidis. Mol Microbiol 52:1081–1090PubMedCrossRefGoogle Scholar
  22. Delany I, Spohn G, Rappuoli R, Scarlato V (2001) The Fur repressor controls transcription of iron-activated and -repressed genes in Helicobacter pylori. Mol Microbiol 42:1297–1309PubMedCrossRefGoogle Scholar
  23. Delany I, Spohn G, Rappuoli R, Scarlato V (2003) An anti-repression Fur operator upstream of the promoter is required for iron-mediated transcriptional autoregulation in Helicobacter pylori. Mol Microbiol 50:1329–1338PubMedCrossRefGoogle Scholar
  24. Diaz-Mireles E, Wexler M, Sawers G, Bellini D, Todd JD, Johnston AW (2004) The Fur-like protein Mur of Rhizobium leguminosarum is a Mn(2+)-responsive transcriptional regulator. Microbiology 150:1447–1456PubMedCrossRefGoogle Scholar
  25. Diaz-Mireles E, Wexler M, Todd JD, Bellini D, Johnston AW, Sawers RG (2005) The manganese-responsive repressor Mur of Rhizobium leguminosarum is a member of the Fur-superfamily that recognizes an unusual operator sequence. Microbiology 151:4071–4078PubMedCrossRefGoogle Scholar
  26. Ernst FD, Bereswill S, Waidner B et al (2005) Transcriptional profiling of Helicobacter pylori Fur- and iron-regulated gene expression. Microbiology 151:533–546PubMedCrossRefGoogle Scholar
  27. Ernst FD, Homuth G, Stoof J et al (2005) Iron-responsive regulation of the Helicobacter pylori iron-cofactored superoxide dismutase SodB is mediated by Fur. J Bacteriol 187:3687–3692PubMedCrossRefGoogle Scholar
  28. Escolar L, Perez-Martin J, de Lorenzo V (1998) Binding of the fur (ferric uptake regulator) repressor of Escherichia coli to arrays of the GATAAT sequence. J Mol Biol 283:537–547PubMedCrossRefGoogle Scholar
  29. Escolar L, Perez-Martin J, de Lorenzo V (1999) Opening the iron box: transcriptional metalloregulation by the Fur protein. J Bacteriol 181:6223–6229PubMedGoogle Scholar
  30. Foster JW, Hall HK (1992) Effect of Salmonella typhimurium ferric uptake regulator (fur) mutations on iron- and pH-regulated protein synthesis. J Bacteriol 174:4317–4323PubMedGoogle Scholar
  31. Friedman YE, O’Brian MR (2004) The ferric uptake regulator (Fur) protein from Bradyrhizobium japonicum is an iron-responsive transcriptional repressor in vitro. J Biol Chem 279:32100–32105PubMedCrossRefGoogle Scholar
  32. Fuangthong M, Helmann JD (2003) Recognition of DNA by three ferric uptake regulator (Fur) homologs in Bacillus subtilis. J Bacteriol 185:6348–6357PubMedCrossRefGoogle Scholar
  33. Fuangthong M, Herbig AF, Bsat N, Helmann JD (2002) Regulation of the Bacillus subtilis fur and perR genes by PerR: not all members of the PerR regulon are peroxide inducible. J Bacteriol 184:3276”3286PubMedCrossRefGoogle Scholar
  34. Gaballa A, Helmann JD (1998) Identification of a zinc-specific metalloregulatory protein, Zur, controlling zinc transport operons in Bacillus subtilis. J Bacteriol 180:5815–5821PubMedGoogle Scholar
  35. Gaballa A, Helmann JD (2002) A peroxide-induced zinc uptake system plays an important role in protection against oxidative stress in Bacillus subtilis. Mol Microbiol 45:997–1005PubMedCrossRefGoogle Scholar
  36. Gaballa A, Wang T, Ye RW, Helmann JD (2002) Functional analysis of the Bacillus subtilis Zur regulon. J Bacteriol 184:6508–6514PubMedCrossRefGoogle Scholar
  37. Gonzalez de Peredo A, Saint-Pierre C, Adrait A et al (1999) Identification of the two zinc-bound cysteines in the ferric uptake regulation protein from Escherichia coli:chemical modification and mass spectrometry analysis. Biochemistry 38:8582–8589CrossRefGoogle Scholar
  38. Grifantini R, Sebastian S, Frigimelica E et al (2003) Identification of iron-activated and -repressed Fur-dependent genes by transcriptome analysis of Neisseria meningitidis group B. Proc Natl Acad Sci USA 100:9542–9547PubMedCrossRefGoogle Scholar
  39. Guedon E, Helmann JD (2003) Origins of metal ion selectivity in the DtxR/MntR family of metalloregulators. Mol Microbiol 48:495–506PubMedCrossRefGoogle Scholar
  40. Hahn JS, Oh SY, Chater KF, Cho YH, Roe JH (2000) H2O2-sensitive fur-like repressor CatR regulating the major catalase gene in Streptomyces coelicolor. J Biol Chem 275:38254–38260PubMedCrossRefGoogle Scholar
  41. Hall HK, Foster JW (1996) The role of fur in the acid tolerance response of Salmonella typhimurium is physiologically and genetically separable from its role in iron acquisition. J Bacteriol 178:5683–5691PubMedGoogle Scholar
  42. Hamza I, Chauhan S, Hassett R, O’Brian MR (1998) The bacterial Irr protein is required for coordination of heme biosynthesis with iron availability. J Biol Chem 273:21669–21674PubMedCrossRefGoogle Scholar
  43. Hamza I, Hassett R, O’Brian MR (1999) Identification of a functional fur gene in Bradyrhizobium japonicum. J Bacteriol 181:5843–5846PubMedGoogle Scholar
  44. Hantke K (1981) Regulation of ferric iron transport in Escherichia coli K12: isolation of a constitutive mutant. Mol Gen Genet 182:288–292PubMedCrossRefGoogle Scholar
  45. Hantke K (1987) Selection Procedure for deregulated iron transport mutants (fur) in Escherichia coli K (12): fur not only affects iron metabolism. Mol Gen Genet 210:135–139PubMedCrossRefGoogle Scholar
  46. Hantke K (2001) Iron and metal regulation in bacteria. Curr Opin Microbiol 4:172–177PubMedCrossRefGoogle Scholar
  47. Hayashi K, Ohsawa T, Kobayashi K, Ogasawara N, Ogura M (2005) The H2O2 stress-responsive regulator PerR positively regulates srfA expression in Bacillus subtilis. J Bacteriol 187:6659–6667PubMedCrossRefGoogle Scholar
  48. Helmann JD, Wu MF, Gaballa A et al (2003) The global transcriptional response of Bacillus subtilis to peroxide stress is coordinated by three transcription factors. J Bacteriol 185:243–253PubMedCrossRefGoogle Scholar
  49. Herbig AF, Helmann JD (2001) Roles of metal ions and hydrogen peroxide in modulating the interaction of the Bacillus subtilis PerR peroxide regulon repressor with operator DNA. Mol Microbiol 41:849–859PubMedCrossRefGoogle Scholar
  50. Hoffmann T, Schutz A, Brosius M, Volker A, Volker U, Bremer E (2002) High-salinity-induced iron limitation in Bacillus subtilis. J Bacteriol 184:718–727PubMedCrossRefGoogle Scholar
  51. Horsburgh MJ, Clements MO, Crossley H, Ingham E, Foster SJ (2001) PerR controls oxidative stress resistance and iron storage proteins and is required for virulence in Staphylococcus aureus. Infect Immun 69:3744–3754PubMedCrossRefGoogle Scholar
  52. Horsburgh MJ, Wharton SJ, Cox AG, Ingham E, Peacock S, Foster SJ (2002) MntR modulates expression of the PerR regulon and superoxide resistance in Staphylococcus aureus through control of manganese uptake. Mol Microbiol 44:1269–1286PubMedCrossRefGoogle Scholar
  53. Jacquamet L, Aberdam D, Adrait A, Hazemann JL, Latour JM, Michaud-Soret I (1998) X-ray absorption spectroscopy of a new zinc site in the Fur protein from Escherichia coli. Biochemistry 37:2564–2571PubMedCrossRefGoogle Scholar
  54. Keyer K, Imlay JA (1996) Superoxide accelerates DNA damage by elevating free-iron levels Proc Natl Acad Sci USA 93:13635–13640PubMedCrossRefGoogle Scholar
  55. Kiley PJ, Storz G (2004) Exploiting thiol modifications. PLoS Biol 2:e400PubMedCrossRefGoogle Scholar
  56. King KY, Horenstein JA, Caparon MG (2000) Aerotolerance and peroxide resistance in peroxidase and PerR mutants of Streptococcus pyogenes. J Bacteriol 182:5290–5299PubMedCrossRefGoogle Scholar
  57. Lam MS, Litwin CM, Carroll PA, Calderwood SB (1994) Vibrio cholerae fur mutations associated with loss of repressor activity:implications for the structural–functional relationships of fur. J Bacteriol 176:5108–5115PubMedGoogle Scholar
  58. Lavrrar JL, Christoffersen CA, McIntosh MA (2002) Fur-DNA interactions at the bidirectional fepDGC-entS promoter region in Escherichia coli. J Mol Biol 322:983–995PubMedCrossRefGoogle Scholar
  59. Lavrrar JL, McIntosh MA (2003) Architecture of a fur binding site: a comparative analysis. J Bacteriol 185:2194–2202PubMedCrossRefGoogle Scholar
  60. Le Cam E, Frechon D, Barray M, Fourcade A, Delain E (1994) Observation of binding and polymerization of Fur repressor onto operator-containing DNA with electron and atomic force microscopes. Proc Natl Acad Sci USA 91:11816–11820PubMedCrossRefGoogle Scholar
  61. Lee JW, Helmann JD (2006a) Biochemical characterization of the structural Zn2+ site in the Bacillus subtilis peroxide sensor PerR. J Biol Chem 281:23567–23578CrossRefGoogle Scholar
  62. Lee JW, Helmann JD (2006b) The PerR transcription factor senses H2O2 by metal-catalysed histidine oxidation. Nature 440:363–367CrossRefGoogle Scholar
  63. Lewin AC, Doughty PA, Flegg L, Moore GR, Spiro S (2002) The ferric uptake regulator of Pseudomonas aeruginosa has no essential cysteine residues and does not contain a structural zinc ion. Microbiology 148:2449–2456PubMedGoogle Scholar
  64. Litwin CM, Calderwood SB (1994) Analysis of the complexity of gene regulation by fur in Vibrio cholerae. J Bacteriol 176:240–248PubMedGoogle Scholar
  65. Masse E, Arguin M (2005) Ironing out the problem: new mechanisms of iron homeostasis. Trends Biochem Sci 30:462–468PubMedCrossRefGoogle Scholar
  66. Masse E, Gottesman S (2002) A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc Natl Acad Sci USA 99:4620–4625PubMedCrossRefGoogle Scholar
  67. Masse E, Vanderpool CK, Gottesman S (2005) Effect of RyhB small RNA on global iron use in Escherichia coli. J Bacteriol 187:6962–6971PubMedCrossRefGoogle Scholar
  68. McHugh JP, Rodriguez-Quinones F, Abdul-Tehrani H et al (2003) Global iron-dependent gene regulation in Escherichia coli. A new mechanism for iron homeostasis. J Biol Chem 278:29478–29486Google Scholar
  69. Mey AR, Craig SA, Payne SM (2005) Characterization of Vibrio cholerae RyhB: the RyhB regulon and role of ryhB in biofilm formation. Infect Immun 73:5706–5719PubMedCrossRefGoogle Scholar
  70. Mills SA, Marletta MA (2005) Metal binding characteristics and role of iron oxidation in the ferric uptake regulator from Escherichia coli. Biochemistry 44:13553–13559PubMedCrossRefGoogle Scholar
  71. Mongkolsuk S, Helmann JD (2002) Regulation of inducible peroxide stress responses. Mol Microbiol 45:9–15PubMedCrossRefGoogle Scholar
  72. Moore CM, Nakano MM, Wang T, Ye RW, Helmann JD (2004) Response of Bacillus subtilis to nitric oxide and the nitrosating agent sodium nitroprusside. J Bacteriol 186:4655–4664PubMedCrossRefGoogle Scholar
  73. Morrissey JA, Cockayne A, Brummell K, Williams P (2004) The staphylococcal ferritins are differentially regulated in response to iron and manganese and via PerR and Fur. Infect Immun 72:972–979PubMedCrossRefGoogle Scholar
  74. Mostertz J, Scharf C, Hecker M, Homuth G (2004) Transcriptome and proteome analysis of Bacillus subtilis gene expression in response to superoxide and peroxide stress. Microbiology 150:497–512PubMedCrossRefGoogle Scholar
  75. Outten CE, O’Halloran TV (2001) Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 292:2488–2492PubMedCrossRefGoogle Scholar
  76. Outten CE, Tobin DA, Penner-Hahn JE, O’Halloran TV (2001) Characterization of the metal receptor sites in Escherichia coli Zur, an ultrasensitive zinc(II) metalloregulatory protein. Biochemistry 40:10417–10423PubMedCrossRefGoogle Scholar
  77. Paget MS, Buttner MJ (2003) Thiol-based regulatory switches. Annu Rev Genet 37:91–121PubMedCrossRefGoogle Scholar
  78. Panina EM, Mironov AA, Gelfand MS (2001) Comparative analysis of FUR regulons in gamma-proteobacteria. Nucleic Acids Res 29:5195–5206PubMedCrossRefGoogle Scholar
  79. Panina EM, Mironov AA, Gelfand MS (2003) Comparative genomics of bacterial zinc regulons: enhanced ion transport, pathogenesis, and rearrangement of ribosomal proteins. Proc Natl Acad Sci USA 100:9912–9917PubMedCrossRefGoogle Scholar
  80. Patzer SI, Hantke K (1998) The ZnuABC high-affinity zinc uptake system and its regulator Zur in Escherichia coli. Mol Microbiol 28:1199–1210PubMedCrossRefGoogle Scholar
  81. Patzer SI, Hantke K (2000) The zinc-responsive regulator Zur and its control of the znu gene cluster encoding the ZnuABC zinc uptake system in Escherichia coli. J Biol Chem 275:24321–24332PubMedCrossRefGoogle Scholar
  82. Payne SM, Wyckoff EE, Murphy ER, Oglesby AG, Boulette ML, Davies NM (2006) Iron and pathogenesis of Shigella: iron acquisition in the intracellular environment. Biometals 19:173-180PubMedCrossRefGoogle Scholar
  83. Pohl E, Haller JC, Mijovilovich A, Meyer-Klaucke W, Garman E, Vasil ML (2003) Architecture of a protein central to iron homeostasis: crystal structure and spectroscopic analysis of the ferric uptake regulator. Mol Microbiol 47:903–915PubMedCrossRefGoogle Scholar
  84. Puig S, Askeland E, Thiele DJ (2005) Coordinated remodeling of cellular metabolism during iron deficiency through targeted mRNA degradation. Cell 120:99–110PubMedCrossRefGoogle Scholar
  85. Qi Z, Hamza I, O’Brian MR (1999) Heme is an effector molecule for iron-dependent degradation of the bacterial iron response regulator (Irr) protein. Proc Natl Acad Sci USA 96:13056–13061PubMedCrossRefGoogle Scholar
  86. Qi Z, O’Brian MR (2002) Interaction between the bacterial iron response regulator and ferrochelatase mediates genetic control of heme biosynthesis. Mol Cell 9:155–162PubMedCrossRefGoogle Scholar
  87. Rea R, Hill C, Gahan CG (2005) Listeria monocytogenes perR mutants display a small-colony phenotype, increased sensitivity to hydrogen peroxide, and significantly reduced murine virulence. Appl Environ Microbiol 71:8314”8322PubMedCrossRefGoogle Scholar
  88. Rea RB, Gahan CG, Hill C (2004) Disruption of putative regulatory loci in Listeria monocytogenes demonstrates a significant role for Fur and PerR in virulence. Infect Immun 72:717–727PubMedCrossRefGoogle Scholar
  89. Richardson AR, Dunman PM, Fang FC (2006) The nitrosative stress response of Staphylococcus aureus is required for resistance to innate immunity. Mol Microbiol 61:927–939PubMedCrossRefGoogle Scholar
  90. Rodionov DA, Dubchak I, Arkin A, Alm E, Gelfand MS (2004) Reconstruction of regulatory and metabolic pathways in metal-reducing delta-proteobacteria. Genome Biol 5:R90PubMedCrossRefGoogle Scholar
  91. Rudolph G, Hennecke H, Fischer HM (2006a) Beyond the Fur paradigm: iron-controlled gene expression in rhizobia. FEMS Microbiol Rev 30:631–648CrossRefGoogle Scholar
  92. Rudolph G, Semini G, Hauser F et al (2006b) The Iron control element, acting in positive and negative control of iron-regulated Bradyrhizobium japonicum genes, is a target for the Irr protein. J Bacteriol 188:733–744CrossRefGoogle Scholar
  93. Tottey S, Harvie DR, Robinson NJ (2005) Understanding how cells allocate metals using metal sensors and metallochaperones. Acc Chem Res 38:775–783PubMedCrossRefGoogle Scholar
  94. Traore DAK, El Gahzouani A, Ilango S et al (2006) Crystal structure of the apo-PerR-Zn protein from Bacillus subtilis. Mol Microbiol 61:1211–1219PubMedCrossRefGoogle Scholar
  95. van Vliet AH, Baillon ML, Penn CW, Ketley JM (1999) Campylobacter jejuni contains two fur homologs: characterization of iron-responsive regulation of peroxide stress defense genes by the PerR repressor. J Bacteriol 181:6371–6376PubMedGoogle Scholar
  96. Wennerhold J, Krug A, Bott M (2005) The AraC-type regulator RipA represses aconitase and other iron proteins from Corynebacterium under iron limitation and is itself repressed by DtxR. J Biol Chem 280:40500–40508PubMedCrossRefGoogle Scholar
  97. White A, Ding X, vanderSpek JC, Murphy JR, Ringe D (1998) Structure of the metal-ion-activated diphtheria toxin repressor/tox operator complex. Nature 394:502–506PubMedCrossRefGoogle Scholar
  98. Wilderman PJ, Sowa NA, FitzGerald DJ et al (2004) Identification of tandem duplicate regulatory small RNAs in Pseudomonas aeruginosa involved in iron homeostasis. Proc Natl Acad Sci USA 101:9792–9797PubMedCrossRefGoogle Scholar
  99. Yang J, Ishimori K, O’Brian MR (2005) Two heme binding sites are involved in the regulated degradation of the bacterial iron response regulator (Irr) protein. J Biol Chem 280:7671–7676PubMedCrossRefGoogle Scholar
  100. Yang J, Panek HR, O’Brian MR (2006a) Oxidative stress promotes degradation of the Irr protein to regulate haem biosynthesis in Bradyrhizobium japonicum. Mol Microbiol 60:209–218CrossRefGoogle Scholar
  101. Yang J, Sangwan I, Lindemann A et al (2006b) Bradyrhizobium japonicum senses iron through the status of haem to regulate iron homeostasis and metabolism. Mol Microbiol 60:427–437CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of MicrobiologyCornell UniversityIthacaUSA

Personalised recommendations