, Volume 20, Issue 3–4, pp 539–547 | Cite as

Iron-uptake in the Euryarchaeon Halobacterium salinarum

  • Dirk Hubmacher
  • Berthold F. MatzankeEmail author
  • Stefan Anemüller


Iron-uptake is well studied in a plethora of pro- and eukaryotic organisms with the exception of Archaea, which thrive mainly in extreme environments. In this study, the mechanism of iron transport in the extremely halophilic Euryarchaeon Halobacterium salinarum strain JW 5 was analyzed. Under low-iron growth conditions no siderophores were detectable in culture supernatants. However, various xenosiderophores support growth of H. salinarum. In [55Fe]–[14C] double-label experiments, H. salinarum displays uptake of iron but not of the chelator citrate. Uptake of iron was inhibited by cyanide and at higher concentrations by Ga. Furthermore, a KM for iron uptake in cells of 2.36 μM and a Vmax of approximately 67 pmol Fe/min/mg protein was determined. [55Fe]-uptake kinetics were measured in the absence and presence of Ga. Uptake of iron was inhibited merely at very high Ga concentrations. The results indicate an energy dependent iron uptake process in H. salinarum and suggest reduction of the metal at the membrane level.


Archaea Halobacterium salinarum Iron uptake Xenosiderophore 


  1. Andrews SC, Robinson AK, Rodriguez-Quinones F (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27:215–237CrossRefPubMedGoogle Scholar
  2. Bergeron RJ, Weimar WR (1990) Kinetics of iron acquisition from ferric siderophores by Paracoccus denitrificans. J Bacteriol 172:2650–2657PubMedGoogle Scholar
  3. Butler A (1998) Acquisition and utilization of transition metal ions by marine organisms. Science 281:207–210CrossRefPubMedGoogle Scholar
  4. Chidambaram MV, Barnes G, Frieden E (1984) Inhibition of ceruloplasmin and other copper oxidases by thiomolybdate. J Inorg Biochem 22:231–240CrossRefPubMedGoogle Scholar
  5. Chiu HJ, Johnson E, Schroder I, Rees DC (2001) Crystal structures of a novel ferric reductase from the hyperthermophilic archaeon Archaeoglobus fulgidus and its complex with NADP+. Structure (Camb) 9:311–319CrossRefGoogle Scholar
  6. de Voss JJ, Rutter K, Schroeder BG, Barry CE (1999) Iron aquisition and metabolism by mycobacteria. J Bacteriol 181:4443–4451PubMedGoogle Scholar
  7. Dundas I, Srinivasan VR, Halvorson HO (1963) A chemically defined medium for Halobacterium salinarium strain 1. Can J Microbiol 9:619–624Google Scholar
  8. Ecker DJ, Matzanke BF, Raymond KN (1986) Recognition and transport of ferric enterobactin in Escherichia coli. J Bacteriol 167:666–673PubMedGoogle Scholar
  9. Fisher M, Gokhman I, Pick U, Zamir A (1997) A structurally novel transferrin-like protein accumulates in the plasma membrane of the unicellular green alga Dunaliella salina grown in high salinities. J Biol Chem 272:1565–1570CrossRefPubMedGoogle Scholar
  10. Fisher M, Zamir A, Pick U (1998) Iron uptake by the halotolerant alga Dunaliella is mediated by a plasma membrane transferrin. J Biol Chem 273:17553–17558CrossRefPubMedGoogle Scholar
  11. Goo YA, Yi EC, Baliga NS, Tao WA, Pan M, Aebersold R, Goodlett DR, Hood L, Ng WV (2003) Proteomic analysis of an extreme halophilic archaeon, Halobacterium sp. NRC-1. Mol Cell Proteomics 2(8):506–524Google Scholar
  12. Grass G, Rensing C (2001) CueO is a multi-copper oxidase that confers copper tolerance in Escherichia coli. Biochem Biophys Res Commun 286:902–908CrossRefPubMedGoogle Scholar
  13. Hoffmann T, Schutz A, Brosius M, Volker A, Volker U, Bremer E (2002) High-salinity-induced iron limitation in Bacillus subtilis. J Bacteriol 184:718–727CrossRefPubMedGoogle Scholar
  14. Howard DH (1999) Aquisition, transport and storage of iron by pathogenic fungi. Clin Microbiol Rev 12:394–404PubMedGoogle Scholar
  15. Hubbard JA, Lewandowska KB, Hughes MN, Poole RK (1986) Effects of iron-limitation of Escherichia coli on growth, the respiratory chains and gallium uptake. Arch Microbiol 146:80–86CrossRefPubMedGoogle Scholar
  16. Hubmacher D, Matzanke BF, Anemüller S (2002) Investigations of iron uptake in Halobacterium salinarum. Biochem Soc Trans 30:710–712CrossRefPubMedGoogle Scholar
  17. Hubmacher D, Matzanke BF, Anemuller S (2003) Effects of iron limitation on the respiratory chain and the membrane cytochrome pattern of the Euryarchaeaon Halobacterium salinarum. Biol Chem 384:1565–1573CrossRefPubMedGoogle Scholar
  18. Huschka H, Naegeli HU, Leuenberger-Ryf H, Keller-Schierlein W, Winkelmann G (1985) Evidence for a common siderophore transport system but different siderophore receptors in Neurospora crassa. J Bacteriol 162:715–721PubMedGoogle Scholar
  19. Kosman DJ (2003) Molecular mechanisms of iron uptake in fungi. Mol Microbiol 47:1185–1197CrossRefPubMedGoogle Scholar
  20. Lesuisse E, Simon-Casteras M, Labbe P (1998) Siderophore-mediated iron uptake in Saccharomyces cerevisiae: the SIT1 gene encodes a ferrioxamine B permease that belongs to the major facilitator superfamily. Microbiol 144:3455–3462CrossRefGoogle Scholar
  21. Makino T, Kiyonaga M, Kina K (1988) A sensitive, direct colorimetric assay of serum iron using the chromogen, nitro-PAPS. Clin Chim Acta 171:19–27CrossRefPubMedGoogle Scholar
  22. Martinez JS, Carter-Franklin JN, Mann EL, Martin JD, Haygood MG, Butler A (2003) Bioinorganic chemistry special feature: structure and membrane affinity of a suite of amphiphilic siderophores produced by a marine bacterium. Proc Natl Acad Sci USA 100:3754–3759CrossRefPubMedGoogle Scholar
  23. Matzanke BF (2005) Iron transport: siderophores. In: Encyclopedia of inorganic chemistry, 2nd edn. Weinheim, Wiley-VCHGoogle Scholar
  24. Matzanke BF, Anemuller S, Schunemann V, Trautwein AX, Hantke K (2004) FhuF, part of a siderophore-reductase system. Biochemistry 43:1386–1392CrossRefPubMedGoogle Scholar
  25. Matzanke BF, Böhnke R, Möllmann U, Reissbrodt R, Schünemann V, Trautwein AX (1997) Iron uptake and intracellular metal transfer in mycobacteria mediated by xenosiderophores. Biometals 10:193–203CrossRefPubMedGoogle Scholar
  26. Matzanke BF, Böhnke R, Möllmann U, Schünemann V, Schumann G, Trautwein AX, Winkelmann G (1999) Transport and utilization of rhizoferrin bound iron in Mycobacterium smegmatis. Biometals 12:315–321CrossRefPubMedGoogle Scholar
  27. Matzanke BF, Bill E, Winkelmann G, Trautwein AX (1987) Role of siderophores in iron storage in spores of N. crassa and A. ochraceus. J Bacteriol 169:5873–5876PubMedGoogle Scholar
  28. Matzanke BF, Muller GI, Raymond KN (1984) Hydroxamate siderophore mediated iron uptake in E. coli: stereospecific recognition of ferric rhodotorulic acid. Biochem Biophys Res Commun 121:922–930CrossRefPubMedGoogle Scholar
  29. Moore RE, Kim Y, Philpott CC (2003) The mechanism of ferrichrome transport through Arn1p and its metabolism in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 100:5664–5669CrossRefPubMedGoogle Scholar
  30. Morel FM, Price NM (2003) The biogeochemical cycles of trace metals in the oceans. Science 300:944–947CrossRefPubMedGoogle Scholar
  31. Ng WV, Kennedy SP, Mahairas GG, Berquist B, Pan M, Shukla HD, Lasky SR, Baliga NS, Thorsson V, Sbrogna J, Swartzell S, Weir D, Hall J, Dahl TA, Welti R, Goo YA, Leithauser B, Keller K, Cruz R, Danson MJ, Hough DW, Maddocks DG, Jablonski PE, Krebs MP, Angevine CM, Dale H, Isenbarger TA, Peck RF, Pohlschroder M, Spudich JL, Jung KW, Alam M, Freitas T, Hou S, Daniels CJ, Dennis PP, Omer AD, Ebhardt H, Lowe TM, Liang P, Riley M, Hood L, Dassarma S (2000) Genome sequence of Halobacterium species NRC-1. Proc Natl Acad Sci USA 97:12176–12181CrossRefPubMedGoogle Scholar
  32. Ratledge C, Dover LG (2000) Iron metabolism in pathogenic bacteria. Ann Rev Microbiol 54:881–941CrossRefGoogle Scholar
  33. Raymond KN, Dertz EA, Kim SS (2003) Bioinorganic chemistry special feature: enterobactin: an archetype for microbial iron transport. Proc Natl Acad Sci USA 100:3584–3588CrossRefPubMedGoogle Scholar
  34. Reindel S, Schmidt CL, Anemuller S, Matzanke BF (2005) Expression and regulation pattern of ferritin-like dpsa in the archaeon Halobacterium Salinarum. Biometals Aug;18(4):387–397Google Scholar
  35. Reindel S, Anemüller S, Sawaryn A, Matzanke BF (2002) The DpsA-homologue of the archaeon Halobacterium salinarum is a ferritin. Biochim Biophys Acta 1598:140–146PubMedGoogle Scholar
  36. Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56CrossRefPubMedGoogle Scholar
  37. Sehgal SN, Gibbons NE (1960) Effect of some metal ions on the growth of Halobacterium cutirubrum. Can J Microbiol 6:165–169PubMedCrossRefGoogle Scholar
  38. Stephenson MC, Ratledge C (1979) Iron transport in Mycobacterium smegmatis: uptake of iron from ferriexochelin. J Gen Microbiol 110:193–202PubMedGoogle Scholar
  39. Stintzi A, Barnes CL, Xu J, Raymond KN (2000) Microbial iron transport via a siderophore shuttle: a membrane transport paradigm. Proc Natl Acad Sci USA 97:10691–10696CrossRefPubMedGoogle Scholar
  40. Timmerman MM, Woods JP (1999) Ferric reduction is a potential iron aquisition mechanism for Histoplasma capsulatum. J Bacteriol 67:6403–6408Google Scholar
  41. Tortell PD, Maldonado MT, Granger J, Price NM (1999) Marine bacteria and biogeochemical cycling of iron in the oceans. FEMS Microb Ecol 29:1–11CrossRefGoogle Scholar
  42. Vadas A, Monbouquette HG, Johnson E, Schröder I (1999) Identification and characterization of a novel ferric reductase from hyperthermophilic archaeon Archaeoglobus fulgidus. J Biol Chem 274:36715–36721CrossRefPubMedGoogle Scholar
  43. Van Ho A, Ward DM, Kaplan J (2002) Transition metal transport in yeast. Annu Rev Microbiol 56:237–261CrossRefPubMedGoogle Scholar
  44. Winkelmann G (2001) Microbial transport systems. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  45. Worst DJ, Gerrits MM, Vandenbroucke-Grauls CMJE, Kusters JG (1998) Helicobacter pylori ribBA-mediated riboflavin production is involved in iron aquisition. J Bacteriol 180:1473–1479PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Dirk Hubmacher
    • 1
  • Berthold F. Matzanke
    • 2
    Email author
  • Stefan Anemüller
    • 3
  1. 1.Department of Anatomy and Cell BiologyMcGill University of MontrealMontrealCanada
  2. 2.Isotopenlabor der TNFUniversität zu LübeckLubeckGermany
  3. 3.Institut für BiochemieUniversität zu LübeckLubeckGermany

Personalised recommendations