, 20:675 | Cite as

Metal Ion availability in mitochondria

  • Fabien  Pierrel
  • Paul A. Cobine
  • Dennis R. Winge


Transition metal ions are required for many aspects of mitochondrial physiology. Copper, iron, manganese and zinc are cofactors in metalloenzymes and metalloproteins within the organelle. Little is known how cells maintain optimal pools of these metal ions for mitochondrial function. This review documents the available literature on mitochondrial metal ion pools and protein metallation reactions. Upon perturbation in metal pools, mis-metallation reactions do occur. Thus, regulation of metal ion accessibility and bioavailability must exist.


Mitochondria Metals Metallation Copper 


  1. Balzan R, Bannister WH, Hunter GJ, Bannister JV (1995) Escherichia coli iron superoxide dismutase targeted to the mitochondria of yeast cells protects the cells against oxidative stress. Proc Natl Acad Sci USA 92:4219–4223CrossRefPubMedGoogle Scholar
  2. Belli G, Polaina J, Tamarit J, de la Torre MA, Rodriguez-Manzaneque MT, Ros J, Herrero (2002) Structure-function analysis of yeast Grx5 monothiol glutaredoxin defines essential amino acids for the function of the protein. J Biol Chem 277:37590–37596CrossRefPubMedGoogle Scholar
  3. Burri L, Vascotto K, Fredersdorf S, Tiedt R, Hall MN, Lithgow T (2004) Zim17, a novel zinc finger protein essential for protein import into mitochondria. J Biol Chem 279:50243–50249CrossRefPubMedGoogle Scholar
  4. Camadro J-M, Labbe P (1982) Kinetic studies of ferrochelatase in yeast. Zinc or iron as competing substrates. Biochim Biophys Acta 707:280–288PubMedGoogle Scholar
  5. Carr HS, Winge DR (2003) Assembly of cytochrome c oxidase within the mitochondrion. Acc Chem Res 36:309–316CrossRefPubMedGoogle Scholar
  6. Cassanova N, O’Brien KM, Stahl BT, McClure T, Poyton RO (2004) Yeast flavohemoglobin, a nitric oxide oxidoreductase, is located in both the cytosol and the mitochondrial matrix: Effects of respiration, anoxia, and the mitochondrial genome on its intracellular level and distribution. J Biol Chem 280:7645–7653CrossRefPubMedGoogle Scholar
  7. Chen OS, Crisp RJ, Valachovic M, Bard M, Winge DR, Kaplan J (2004) Transcription of the yeast iron regulon does not respond directly to iron but rather to iron-sulfur cluster biosynthesis. J Biol Chem 279:29513–29518CrossRefPubMedGoogle Scholar
  8. Chen OS, Hemenway S, Kaplan J (2002) Inhibition of Fe-S cluster biosynthesis decreases mitochondrial iron export: Evidence that Yfh1 affects Fe-S cluster synthesis. Proc Natl Acad Sci USA 99:12321–12326CrossRefPubMedGoogle Scholar
  9. Cobine PA, Ojeda LD, Rigby KM, Winge DR (2004) Yeast contain a non-proteinaceous pool of copper in the mitochondrial matrix. J Biol Chem 279:14447–14455CrossRefPubMedGoogle Scholar
  10. Cobine PA, Pierrel F, Bestwick M, Winge DR (2006) Mitochondrial matrix copper complex used in metallation of cytochrome oxidase and superoxide dismutase. J Biol Chem 281:36552–36559CrossRefPubMedGoogle Scholar
  11. Cook JD, Bencze KZ, Jankovic AD, Crater AK, Busch CN, Bradley PB, Stemmler AJ, Spaller MR, Stemmler TL (2006) Monomeric yeast frataxin is an iron binding protein. Biochemistry 445:7767–7777CrossRefGoogle Scholar
  12. Field LS, Furukawa Y, O’Halloran TV, Culotta VC (2003) Factors controlling the uptake of yeast copper/zinc superoxide dismutase into mitochondria. J Biol Chem 278:28052–28059CrossRefPubMedGoogle Scholar
  13. Foury F, Roganti T (2002) Deletion of the mitochondrial carrier genes MRS3 and MRS4 suppresses mitochondrial iron accumulation in a yeast frataxin deficient strain. J Biol Chem 277:24475–24483CrossRefPubMedGoogle Scholar
  14. Frey TG, Mannella CA (2000) The internal structure of mitochondria. Trends in Biochem Sci 25:319–324CrossRefGoogle Scholar
  15. Furukawa Y, Torres AS, O’Halloran TV (2004) Oxygen-induced maturation of SOD1: a key role for disulfide formation by the copper chaperone CCS. EMBO J 23:2872–2881CrossRefPubMedGoogle Scholar
  16. Gordon DM, Lyver ER, Lesuisse E, Dancis A, Pain D (2006) GTP in the mitochondrial matrix plays a crucial role in organellar iron homeostasis. Biochem J 400:163–168CrossRefPubMedGoogle Scholar
  17. He Y, Alam SL, Proteasa SV, Zhang Y, Lesuisse E, Dancis A, Stemmler TL (2004) Yeast frataxin solution structure, iron binding, and ferrochelatase interaction. Biochemistry 43:16254–16262CrossRefPubMedGoogle Scholar
  18. Hermann GJ, Shaw JM (1998) Mitochondrial dynamics in yeast. Annu Rev Cell Dev Biol 14:265–303CrossRefPubMedGoogle Scholar
  19. Huffman DL, O’Halloran TV (2001) Function, structure, and mechanism of intracellular copper trafficking proteins. Annu Rev Biochem 70:677–701CrossRefPubMedGoogle Scholar
  20. Kispal G, Sipos K, Lange H, Fekete Z, Bedekovics T, Janaky T, Bassler J, Aguilar Netz DJ, Rotte J, Lill R (2005) Biogenesis of cytosolic ribosomes requires the essential iron-sulfur protein Rli1 and mitochondria. EMBO J 24:589–598CrossRefPubMedGoogle Scholar
  21. Koehler CM (2004) The small Tim proteins and the twin Cx3C motif. Trends Biochem Sci 29:1–4CrossRefPubMedGoogle Scholar
  22. Labbe R (1991) Zinc protoporphyrin/heme ratio as an indicator of marrow iron stores. Am J Clin Pathol 95:758PubMedGoogle Scholar
  23. Lesuisse E, Lyver ER, Knight SAB, Dancis A (2004) Role of YHM1, encoding a mitochondrial carrier protein, in iron distribution of yeast. Biochem J 378:599–607CrossRefPubMedGoogle Scholar
  24. Lesuisse E, Santos R, Matzanke BF, Knight SAB, Camadro J-M, Dancis A (2003) Iron use for heme synthesis is under control of the yeast frataxin homolog (Yfh1). Hum Mol Genet 12:879–889CrossRefPubMedGoogle Scholar
  25. Levi S, Corsi B, Bosisio M, Invernizzi R, Volz A, Sanford D, Arosio P, Drysdale J (2001) A human mitochondrial ferritin encoded by an intronless gene. J Biol Chem 276:24437–24440CrossRefPubMedGoogle Scholar
  26. Li L, Kaplan J (1997) Characterization of two homologous yeast genes that encode mitochondrial iron transporters. J Biol Chem 272:28485–28493CrossRefPubMedGoogle Scholar
  27. Lill R, Diekert K, Kaut A, Lange H, Pelzer W, Prohl C, Kispal G (1999) The essential role of mitochondria in the biogenesis of cellular iron-sulfur proteins. Biol Chem 380:1157–1166CrossRefPubMedGoogle Scholar
  28. Lill R, Muhlenhoff U (2006) Iron-sulfur protein biogenesis in eukaryotes: components and mechanisms. Annu Rev Cell Dev Biol 22:457–486CrossRefPubMedGoogle Scholar
  29. Lin S-J, Pufahl RA, Dancis A, O’Halloran TV, Culotta VC (1997) A role for the Saccharomyces cerevisiae ATX1 gene in copper trafficking and iron transport. J Biol Chem 272:9215–9220CrossRefPubMedGoogle Scholar
  30. Lu H, Woodburn J (2005) Zinc binding stabilizes mitochondrial Tim10 in a reduced and import-competent state kinetically. J Mol Biol 353:897–910CrossRefPubMedGoogle Scholar
  31. Luk E, Culotta VC (2001) Manganese superoxide dismutase in Saccharomyces cerevisiae acquires its metal co-factor through a pathway involving the Nramp metal transporter, Smf2. J Biol Chem 276:47556–47562CrossRefPubMedGoogle Scholar
  32. Luk E, Carroll M, Baker M, Culotta VC (2003a) Manganese activation of superoxide dismutase 2 in Saccharomyces cerevisiae requires MTM1, a member of the mitochondrial carrier family. Proc Natl Acad Sci USA 100:10353–10357CrossRefGoogle Scholar
  33. Luk E, Jensen LT, Culotta VC (2003b) The many highways for intracellular trafficking of metals. J Bio Inorg Chem 8:803–809CrossRefGoogle Scholar
  34. Luk E, Yang M, Jensen LT, Bourbonnais Y, Culotta VC (2005) Manganese activation of superoxide dismutase 2 in the mitochondria of Saccharomyces cerevisiae. J Biol Chem 280:22715–22720CrossRefPubMedGoogle Scholar
  35. Marobbio CM, Agrimi G, Lasorsa FM, Palmieri F (2003) Identification and functional reconstitution of yeast mitochondrial carrier for S-adeneosylmethionine. EMBO J 22:5972–5982CrossRefGoogle Scholar
  36. Maxwell DP, Wang Y, McIntosh L (1999) The alternate oxidase lowers mitochondrial reactive oxygen production in plant cells. Proc Natl Acad Sci USA 96:8271–8276CrossRefPubMedGoogle Scholar
  37. Meinecke M, Wagner R, Kovermann P, Guiard B, Mick DU, Hutu DP, Voos W, Truscott KN, Chacinska A, Pfanner N, Rehling P (2006) Tim50 maintains the permeability barrier of the mitochondrial inner membrane. Science 312:1523–1526CrossRefPubMedGoogle Scholar
  38. Muhlenhoff U, Richhardt N, Ristow M, Kispal G, Lill R (2002) The yeast frataxin homolog Yfh1 plays a specific role in the maturation of cellular Fe/S proteins. Hum Mol Genet 11:2025–2036CrossRefPubMedGoogle Scholar
  39. O’Halloran TV, Culotta VC (2000) Metallochaperones, an intracellular shuttle service for metal ions. J Biol Chem 275:25057–25060CrossRefPubMedGoogle Scholar
  40. Ojeda L, Keller G, Muhlenhoff U, Rutherford JC, Lill R, Winge DR (2006) Role of glutaredoxin-3 and glutaredoxin-4 in the iron regulation of the Aft1 transcriptional activator in Saccharomyces cerevisiae. J Biol Chem 281:17661–17669CrossRefPubMedGoogle Scholar
  41. Rissler M, Wiedemann N, Pfannschmidt S, Gabriel K, Guiard B, Pfanner N, Chacinska A (2005) The essential mitochondrial protein Erv1 cooperates with Mia40 in biogenesis of intermembrane proteins. J Mol Biol 353:485–492CrossRefPubMedGoogle Scholar
  42. Robinson AJ, Kunji ERS (2006) Mitochondrial carriers in the cytoplasmic state have a common substrate binding site. Proc Natl Acad Sci USA 103:2617–2622CrossRefPubMedGoogle Scholar
  43. Rodriguez-Manzaneque MT, Tamarit J, Belli G, Ros J, Herrero E (2002) Grx5 is a mitochondrial glutaredoxin required for the activity of iron/sulfur enzymes. Mol Biol Cell 13:1109–1121CrossRefPubMedGoogle Scholar
  44. Rutherford JC, Ojeda L, Balk J, Muhlenhoff U, Lill R, Winge DR (2005) Activation of the iron regulon by the yeast Aft1/Aft2 transcription factors depends on mitochondrial but not cytosolic iron-sulfur protein biogenesis. J Biol Chem 280:10135–10140CrossRefPubMedGoogle Scholar
  45. Schott EJ, Vasta GR (2003) The PmSOD1 gene of the protistian parasite Perkinsus marinus complements the sod2D mutant of Saccharomyces cerevisiae, and directs an iron superoxide dismutase to mitochondria. Mol Biochem Parasitol 126:81–92CrossRefPubMedGoogle Scholar
  46. Sensi SL, Ton-That D, Sullivan PG, Jonas EA, Gee KR, Kaczmarek LK, Weiss JH (2003) Modulation of mitochondrial function by endogenous Zn2+ pools. Proc Natl Acad Sci. USA 100:6157–6162CrossRefPubMedGoogle Scholar
  47. Sturtz LA, Diekert K, Jensen LT, Lill R, Culotta VC (2001) A fraction of yeast Cu,Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria. a physiological role for Sod1 in guarding against mitochondrial oxidative damage. J Biol Chem 276:38084–38089PubMedGoogle Scholar
  48. Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Hakashima R, Yaono R, Yoshikawa S (1995) Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8A. Science 269:1069–1074CrossRefPubMedGoogle Scholar
  49. Tzagoloff A (1982) Mitochondria. Plenum Press, New YorkGoogle Scholar
  50. Vozza A, Blanco E, Palmieri L, Palmieri F (2004) Identification of the mitochondrial GTP/GDP transporter in Saccharomyces cerevisiae. J Biol Chem 279:20850–20857CrossRefPubMedGoogle Scholar
  51. Wong PC, Waggoner D, Subramaniam JR, Tessarollo L, bartnikas TB, Culotta VC, Price DL, Rothsten J, Gitlin JD (2000) Copper chaperone for superoxide dismutase is essential to activate mammalian Cu/Zn superoxide dismutase. Proc Natl Acad Sci USA 97:2886–2891CrossRefPubMedGoogle Scholar
  52. Yamaguchi-Iwai Y, Ueta R, Fukunaka A, Sasaki R (2002) Subcellular localization of Aft1 transcription factor responds to iron status in Saccharomyces cerevisiae. J Biol Chem 277:18914–18918CrossRefPubMedGoogle Scholar
  53. Yang M, Cobine PA, Molik S, Naranuntarat A, Lill R, Winge DR, Culotta VC (2006) The effects of mitochondrial iron homeostasis on cofactor specificity of superoxide dismutase 2. EMBO J 25:1775–1783CrossRefPubMedGoogle Scholar
  54. Zhang M, Mileeykovskaya E, Dowhan W (2002) Cardiolipin is required for supercomplex formation in the inner mitochondrial membrane. J Biol Chem 277:43553–43556CrossRefPubMedGoogle Scholar
  55. Zhang M, Mileykovskaya E, Dowhan W (2005a) Cardiolipin is essential for organization of complexes III and IV into a supercomplex in intact yeast mitochondria. J Biol Chem 280:29403–29408CrossRefGoogle Scholar
  56. Zhang Y, Lyver ER, Knight SAB, Lesuisse E, Dancis A (2005b) Frataxin and mitochondrial carrier proteins, Mrs3 and Mrs4, cooperate in providing iron for heme synthesis. J Biol Chem 280:19794–19807CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Fabien  Pierrel
    • 1
  • Paul A. Cobine
    • 1
  • Dennis R. Winge
    • 1
  1. 1.Departments of Medicine and BiochemistryUniversity of Utah Health Sciences CenterSalt Lake CityUSA

Personalised recommendations