Advertisement

Biometals

, Volume 19, Issue 6, pp 593–599 | Cite as

Accumulation of cadmium ions in the methylotrophic yeast Hansenula polymorpha

  • Oleksandra V. Blazhenko
  • Martin Zimmermann
  • Hyun Ah Kang
  • Grzegorz Bartosz
  • Michel J. Penninckx
  • Vira M. Ubiyvovk
  • Andriy A. Sibirny
Article

Abstract

Intracellular cadmium (Cd2+) ion accumulation and the ability to produce specific Cd2+ ion chelators was studied in the methylotrophic yeast Hansenula polymorpha. Only one type of Cd2+ intracellular chelators, glutathione (GSH), was identified, which suggests that sequestration of this heavy metal in H. polymorpha occurs similarly to that found in Saccharomyces cerevisiae, but different to Schizosaccharomys pombe and Candida glabrata which both synthesize phytochelatins. Cd2+ ion uptake in the H. polymorpha wild-type strains appeared to be an energy dependent process. It was found that Δgsh2 mutants, impaired in the first step of GSH biosynthesis, are characterized by increase in net Cd2+ ion uptake by the cells, whereas Δgsh1met1 and Δggt1 mutants impaired in sulfate assimilation and GSH catabolism, respectively, lost the ability to accumulate Cd2+ intracellularly. Apparently H. polymorpha, similarly to S. cerevisiae, forms a Cd-GSH complex in the cytoplasm, which in turn regulates Cd2+ uptake. Genes GSH1/MET1 and GGT1 are involved in maturation and metabolism of cellular Cd-GSH complex, respectively. Transport of [3H]N-ethylmaleimide-S-glutathione ([3H]NEM-SG) conjugate into crude membrane vesicules, purified from the wild-type cells of H. polymorpha appeared to be MgATP dependent, uncoupler insensitive and vanadate sensitive. We suggest that MgATP dependent transporter involved in Cd-GSH uptake in H. polymorpha, is similar to S. cerevisiae Ycf1-mediated vacuolar transporter responsible for accumulation of organic GS-conjugates and Cd-GSH complex.

Key words

cadmium glutathione Hansenula polymorpha transport detoxification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamis PDB, Gomes DS, Pinto MLCC, Panek AD and Eleutherio ECA (2004). The role of glutathione transferases in cadmium stress. Toxicol Lett 154: 81–88PubMedCrossRefGoogle Scholar
  2. Akerboom TPM, Bartosz G and Sies H (1992). Low-and high-Km transport of dinitrophenyl glutathione in inside-out vesicles from human erytrocytes. Biochim Biophys Acta 1103: 115–119PubMedCrossRefGoogle Scholar
  3. Blackwell KJ, Singleton I and Tobin JM (1995). Metal cation uptake by yeast: a review. Appl Microbiol Biotechnol 43: 579–584PubMedCrossRefGoogle Scholar
  4. Breierova E, Vajczikova I, Sasinkova V, Stratilova E, Fisera M, Gregor T and Sajbidor J (2002). Biosorption of cadmium ions by different yeast species. Z Naturforsch 57: 634–639Google Scholar
  5. Dameron CT, Reese RN, Mehra RK, Kortan AR, Carroll PJ, Steigerwald ML, Brus LE and Winge DR (1989). Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338: 596–597CrossRefGoogle Scholar
  6. Gadd GM, ed. 2001 Fungi in Bioremediation. Cambridge University PressGoogle Scholar
  7. (2002). Hansenula polymorpha. Biology and Application. Weinheim, Wiley-VCH Verlag GmbHGoogle Scholar
  8. Gitan RS, Shababi M, Kramer M and Eide DJ (2003). A Cytosolic domain of the yeast Zrt1 zinc transporter is required for its post-translational inactivation in response to zinc and cadmium. J Biol Chem 278: 39558–39564PubMedCrossRefGoogle Scholar
  9. Gomes DS, Fragoso LC, Riger CJ, Panek AD and Eleutherio ECA (2002). Regulation of cadmium uptake by Saccharomyces cerevisiae. Biochim Biophys Acta 1573: 21–25PubMedGoogle Scholar
  10. Ishikawa T, Li ZS, Lu YP and Rea PA (1997). The GS-X pump in plant, yeast and animal cells: structure, function and gene expression. Biosci Reports 17: 189–207CrossRefGoogle Scholar
  11. Li ZS, Szczypka M, Lu YP, Thiele DJ and Rea PA (1996). The yeast cadmium factor protein (YCF1) is a vacuolar glutathione S-conjugate pump. J Biol Chem 271: 6509–6517PubMedCrossRefGoogle Scholar
  12. Mahola OV, Ubiyvovk VM, Nazarko TU, Sibirny AA, Sohn MJ, Kang HA. 2003 The role of GSH1/MET1 and GSH2 genes in cadmium, chromate and methanol tolerance in methylotrophic yeast Hansenula polymorpha. Abstracts of XXI-st International conference on Yeast Genetics and Molecular Biology, Gothenburg, Sweden. Yeast 20, 181Google Scholar
  13. Mehdi K, Thierie J and Penninckx MJ (2001). γ-Glutamyltranspeptidase in the yeast Saccharomyces serevisiae and its role in the vacuolar transport and metabolism of glutathione. Biochem J 359: 631–637PubMedCrossRefGoogle Scholar
  14. Momose Y, Kitagawa E and Iwahashi H (2001). Comparison of genome-wide expression patterns in response to heavy metal in Saccharomyces cerevisiae. Chem-Bio Inform J 1: 41–50CrossRefGoogle Scholar
  15. Nies DH (1999). Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51: 730–750PubMedCrossRefGoogle Scholar
  16. Ortiz DF, Ruscitti T, McCue KF and Ow DW (1995). Transport of metal-binding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein. J Biol Chem 270: 4721–4728PubMedCrossRefGoogle Scholar
  17. Penninckx MJ (2002). An overview on glutathione in Saccharomyces versus non-conventional yeasts. FEMS Yeast Res 2: 295–305PubMedGoogle Scholar
  18. Penninckx MJ and Elskens MT (1993). Metabolism and functions of glutathione in micro-organisms. Adv Microb Physiol 34: 240–301Google Scholar
  19. Pocsi I, Prade RA and Penninckx MA (2004). Glutathione, altruistic metabolite in fungi. Adv Microb Physiol 49: 1–76PubMedGoogle Scholar
  20. Raux E, McVeigh T, Peters SE, Leustek T and Warren MJ (1999). The role of Saccharomyces cerevisiae Met1p and Met8p in sirohaem and cobalamin biosynthesis. Biochem J 338: 701–708PubMedCrossRefGoogle Scholar
  21. Rutherford JC, Ojeda L, Balk J, Muhlenhoff U, Lill R and Winge DR (2005). Activation of the iron regulon by the yeast Aft1/Aft2 transcription factors depends on mitochondrial but not cytosolic iron-sulfur protein biogenesis. J Biol Chem 280: 10135–10140PubMedCrossRefGoogle Scholar
  22. Shirashi E, Inouhe M, Joho M, Tohoyama H. 2000 The cadmium-resistant gene, CAD2, which is a mutated putative copper-transporter gene (PCA1), controls the intracellular cadmium-level in the yeast S. cerevisiae. Curr Genet 37, 79–86Google Scholar
  23. Speiser DM, Ortiz DF, Kreppel L and Ow DW (1992). Purine biosynthetic genes are required for cadmium tolerance in Schizosaccharomyces pombe. Mol Cell Biol 12: 5301–5310PubMedGoogle Scholar
  24. Stohs SJ and Bagchi D (1995). Oxidative mechanisms in the toxicity of metal ions. Free Rad Biol Med 18: 321–336PubMedCrossRefGoogle Scholar
  25. Tsuchida S. 1997 Glutathione transferases. In: Bertino JR ed. Encyclopedia of Cancer. New York, London: Academic Press 1, 733–743Google Scholar
  26. Ubiyvovk VM, Maszewski J, Bartosz G and Sibirny AA (2003). Vacuolar accumulation and extracellular extrusion of electrophilic compounds by wild-type and glutathione-deficient mutants of the methylotrophic yeast Hansenula polymorpha. Cell Biol Intern 27: 785–789CrossRefGoogle Scholar
  27. Ubiyvovk VM, Nazarko TY, Stasyk OG, Sohn MJ, Kang HA and Sibirny AA (2002). GSH2, a gene encoding γ-glutamylcysteine synthetase in the methylotrophic yeast Hansenula polymorpha. FEMS Yeast Res 2: 327–332PubMedGoogle Scholar
  28. Ubiyvovk VM, Blazhenko OV, Gigot D, Penninckx M, Sibirny AA. 2006 The role of γ-glutamyltranspeptidase in detoxification of xenobiotics in the yeasts Hansenula polymorpha and Saccharomyces cerevisiae. Cell Biol Intern (in press)Google Scholar
  29. Vido K, Spector D, Lagniel G, Lopez S, Toledano MB and Labarres J (2001). A proteome analysis of the cadmium response in Saccharomyces cerevisiae. J Biol Chem 276: 8469–8474PubMedCrossRefGoogle Scholar
  30. Wemmie JA, Szczypka MS, Thiele DJ and Moye-Rowley WS (1994). Cadmium tolerance mediated by the yeast AP-1 protein requires the presence of an ATP-binding cassette transporter-encoding gene, YCF1. J Biol Chem 269: 32592–32597PubMedGoogle Scholar
  31. Wunderlich C, Zhao Q, Zimmermann M and Wolf K (1995). Physiological characterization of a cadmium-resistant mutant in the fission yeast Schizosaccharomyces pombe. Microbiol Res 150: 233–237PubMedGoogle Scholar
  32. Yu W, Santhanagopalan V, Sewell AK, Jensen LT and Winge DR (1994). Dominance of metallothionein in metal ion buffering in yeast capable of synthesis of (γEC)n G isopeptides. J Biol Chem 269: 21010–21015PubMedGoogle Scholar
  33. Zhao H and Eide D (1996). The yeast ZRT1 gene encodes the zinc transporter protein of a high-affinity uptake system induced by zinc limitation. Proc Natl Acad Sci USA 93: 2454–2458PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Oleksandra V. Blazhenko
    • 1
  • Martin Zimmermann
    • 2
  • Hyun Ah Kang
    • 3
  • Grzegorz Bartosz
    • 4
  • Michel J. Penninckx
    • 5
  • Vira M. Ubiyvovk
    • 1
  • Andriy A. Sibirny
    • 1
    • 6
  1. 1.Institute of Cell BiologyNat. Acad. Sci. of UkraineLvivUkraine
  2. 2.Institut fur Biologie IV- Microbiologie RWTH AachenAachenGermany
  3. 3.Korea Research Institute of Bioscience and BiotechnologyDaejeonKorea
  4. 4.Department of Molecular BiophysicsUniversity of LódzLódzPoland
  5. 5.Laboratory of Microbial Physiology and EcologyUniversité Libre BruxellesBrusselsBelgium
  6. 6.Department of Metabolic EngineeringRzeszów UniversityRzeszówPoland

Personalised recommendations