Biometals

, Volume 19, Issue 5, pp 473–481 | Cite as

Cadmium accumulation and interactions with zinc, copper, and manganese, analysed by ICP-MS in a long-term Caco-2 TC7 cell model

  • Laurent Noël
  • Céline Huynh-Delerme
  • Thierry Guérin
  • Hélène Huet
  • Jean-Marc Frémy
  • Martine Kolf-Clauw
Article

Abstract

The influence of long-term exposure to cadmium (Cd) on essential minerals was investigated using a Caco-2 TC7 cells and a multi-analytical tool: microwave digestion and inductively coupled plasma mass spectrometry. Intracellular levels, effects on cadmium accumulation, distribution, and reference concentration ranges of the following elements were determined: Na, Mg, Ca, Cr, Fe, Mn, Co, Ni, Cu, Zn, Mo, and Cd. Results showed that Caco-2 TC7 cells incubated long-term with cadmium concentrations ranging from 0 to 10 μmol Cd/l for 5 weeks exhibited a significant increase in cadmium accumulation. Furthermore, this accumulation was more marked in cells exposed long-term to cadmium compared with controls, and that this exposure resulted in a significant accumulation of copper and zinc but not of the other elements measured. Interactions of Cd with three elements: zinc, copper, and manganese were particularly studied. Exposed to 30 μmol/l of the element, manganese showed the highest inhibition and copper the lowest on cadmium intracellular accumulation but Zn, Cu, and Mn behave differently in terms of their mutual competition with Cd. Indeed, increasing cadmium in the culture medium resulted in a gradual and significant increase in the accumulation of zinc. There was a significant decrease in manganese from 5 μmol Cd/l exposure, and no variation was observed with copper.

Keywords

cadmium Caco-2 cells in vitro absorption ICP-MS microwave digestion trace metals 

Abbreviation

AAS

Atomic absorption spectrometry

CRM

Certified reference material

PBS

Phosphate buffered saline without calcium and magnesium

DMEM

Dubelcco’s modified Eagle’s medium

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alfven, T, Jarup, L, Elinder, CG 2002Cadmium and lead in blood in relation to low bone mineral density and tubular proteinuriaEnviron Health Persp110699702CrossRefGoogle Scholar
  2. Barnes, RM 1993Advances in inductively coupled plasma mass spectrometry: human nutrition and toxicologyAnal Chim Acta283115130CrossRefGoogle Scholar
  3. Blais, A, Lecoeur, S 1999Cadmium uptake and transepithelial transport in control and long-term exposed Caco-2 cells: the role of metallothioneinToxicol Appl Pharmacol1607685PubMedCrossRefGoogle Scholar
  4. Blais, A, Lecoeur, S, Milhaud, G, Tome, D, Kolf-Clauw, M 1999Cadmium uptake and transepithelial transport in control and long-term exposed Caco-2 cells: the role of metallothioneinToxicol Appl Pharmacol1607685PubMedCrossRefGoogle Scholar
  5. Blazka, ME, Shaikh, ZA 1992Cadmium and mercury accumulation in rat hepatocytes: interactions with other metal ionsToxicol Appl Pharmacol113118125PubMedCrossRefGoogle Scholar
  6. Boveri, M, Pazos, P, Genari, A, Casado, J, Hartung, T, Prieto, P 2004Comparison of the sensitivity of different toxicological endpoints in Caco-2 cells after cadmium chloride treatmentArch Toxicol78201206PubMedCrossRefGoogle Scholar
  7. Brzoska, MM, Moniuszko-Jakoniuk, J 2001Interactions between cadmium and zinc in the organismFood Chem Toxicol39967980PubMedCrossRefGoogle Scholar
  8. Chaney, RL, Reeves, PG, Angle, JS 2001

    Rice plant nutritional and human nutritional characteristics roles in human Cd toxicity

    Horst, WJ eds. Plant Nutrition: Food Security and Sustainability of Agro-ecosystems through Basic and Applied ResearchGermanyDordrecht228289
    Google Scholar
  9. Chantret, I, Rodolosse, A, Barbat, A, Dussaulx, E, Brot-Laroche, E, Zweibaum, A, Rousset, M 1994Differential expression of sucrase-isomaltase in clones isolated from early and late passages of the cell line Caco-2: evidence for glucose-dependent negative regulationJ Cell Sci107213225PubMedGoogle Scholar
  10. Davies, NT, Campbell, JK 1977The effect of cadmium on intestinal copper absorption and binding in the ratLife Sci20955960PubMedCrossRefGoogle Scholar
  11. Delie, F, Rubas, W 1997A human colonic cell line sharing similarities with enterocytes as a model to examine oral absorption: advantages and limitations of the Caco-2 modelCrit Rev Therap Drug Carrier Syst14221286Google Scholar
  12. Eklund, G, Lindén, A, Tallkvist, J, Oskarsson, A 2003Bioavailability of cadmium from in vitro digested infant food studied in Caco-2 cellsJ Agric Food Chem5141684174PubMedCrossRefGoogle Scholar
  13. Endo, T, Kimura, O, Sakata, M 1996Effects of zinc and copper on uptake of cadmium by LLC-PK1 cellsBiol Pharm Bull19944948PubMedGoogle Scholar
  14. Ferruzza, S, Sambuy, Y, Ciriolo, MR, De Martino, A, Santaroni, P, Rotilio, G, Scarino, ML 2000Copper uptake and intracellular distribution in the human intestinal Caco-2 cell lineBioMetals13179185PubMedCrossRefGoogle Scholar
  15. Finley JW, Briske-Anderson M, Reeves PG, Johnson LK. 1995 Zinc uptake and transcellular movement by caco-2 cells: studies with media containing fetal bovine serum. Nutr Biochem, 137–144Google Scholar
  16. Fogh, J, Fogh, JM, Orfeo, T 1977One hundred and twenty seven cultured human tumor cell lines producing tumors in nude miceJ Natl Cancer Inst59221226PubMedGoogle Scholar
  17. Friberg, L, Kjerström, T, Norberg, GF 1986

    Cadmium

    Friberg, LNorberg, GFVouk, V eds. Handbook on the Toxicology of MetalsElsevier Science Publishers B.V.Amsterdam131183
    Google Scholar
  18. Gachot, B, Poujeol, P 1992Effects of cadmium and copper on zinc transport kinetics by isolated renal proximal cellsBiol Trace Element Res3593103Google Scholar
  19. Hidalgo, IJ, Raub, TJ, Borchardt, RT 1989Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeabilityGastroenterology96736749PubMedGoogle Scholar
  20. Houpert, P, Federspiel, B, Milhaud, G 1997Toxicokinetics of cadmium in lactating and nonlactating ewes after oral and intravenous administrationEnviron Res72140150PubMedCrossRefGoogle Scholar
  21. Huynh-Delerme, C, Huet, H, Noel, L, Frigieri, A, Kolf-Clauw, M 2005Increased functional expression of P-glycoprotein in Caco-2 TC7 cells exposed long-term to cadmiumToxicol In Vitro19439447PubMedCrossRefGoogle Scholar
  22. Jovani, M, Barbera, R, Farre, R, Martin De Aguilera, E 2001Calcium, iron, and zinc uptake from digests of infant formulas by caco-2 cellsJ Agric Food Chem4934803485PubMedCrossRefGoogle Scholar
  23. Jumarie, C, Campbell, PG, Houde, M, Denizeau, F 1999Evidence for an intracellular barrier to cadmium transport through Caco-2 cell monolayersJ Cell Physiol180285297PubMedCrossRefGoogle Scholar
  24. Jumarie, C, Campbell, PGC, Berteloot, A, Houde, M, Denizeau, F 1997Caco-2 cell line used as an in vitro model to study cadmium accumulation in intestinal epithelial cellsJ Membrane Biol1583148CrossRefGoogle Scholar
  25. Le Ferrec, E, Chesne, C, Artusson, P, Brayden, D, Fabre, G, Gires, P, Guillou, F, Rousset, M, Rubas, W, Scarino, ML 2001In Vitro Models of the Intestinal BarrierATLA29649668PubMedGoogle Scholar
  26. Mata, L, Sanchez, L, Calvo, M 1996Cadmium uptake by Caco-2 cells. Effect of some milk componentsChem Biol Interact100277288PubMedCrossRefGoogle Scholar
  27. Noël, L, Guérin, T, Frémy, JM, Huet, H, Kolf-Clauw, M 2003aOptimized simultaneous determination of several elements in human intestinal Caco-2 TC7 cells by inductively coupled plasma-mass spectrometry after closed vessel microwave digestionJ AOAC Int8612251231Google Scholar
  28. Noël, L, Leblanc, JC, Guérin, T 2003bDetermination of several elements in duplicate meals from catering establishment using closed vessel microwave digestion with inductively coupled plasma mass spectrometry detection: estimation of daily dietary intakeFood Additives Contaminants204456CrossRefGoogle Scholar
  29. Noël, L, Guérin, T, Kolf-Clauw, M 2004Subchronic dietary exposure of rats to cadmium alters the metabolism of metals essential to bone healthFood Chem Toxicol4212031210PubMedCrossRefGoogle Scholar
  30. Orlowski, C, Piotrowski, JK 2003Biological levels of cadmium and zinc in the small intestine of non-occupationally exposed human subjectsHuman Exp Toxicol225763CrossRefGoogle Scholar
  31. Pfaller, W, Balls, M, Clothier, R, Coecke, S, Dierickx, P, Ekwall, B, Hanley, BA, Hartung, T, Prieto, P, Ryan, MP, Schmuck, G, Sladowski, D, Vericat, JA, Wendel, A, Wolf, A, Zimmer, J 2001Novel advanced in vitro methods for long-term toxicity testing – ECVAM Workshop ReportAlternat Lab Anim29393426Google Scholar
  32. Pigman, EA, Blanchard, J, Laird, HE,II 1997A study of cadmium transport pathways using the Caco-2 cell modelToxicol Appl Pharmacol142243247PubMedCrossRefGoogle Scholar
  33. Pinto, M, Robine-Leon, S, Appay, MB, Kedinger, M, Triadou, N, Dussaulx, E, Lacroix, B, Simon-Assman, P, Haffen, K, Fogh, J, Zweibaum, A 1983Enterocyte-like differenciation and polarization of the human colon carcinoma cell line Caco 2 in cultureBiol Cell47323330Google Scholar
  34. Ranaldi, G, Consalvo, R, Sambuy, Y, Scarino, ML 2003Permeability characteristics of parental and clonal human intestinal Caco-2 cell lines differentiated in serum-supplemented and serum-free mediaToxicol In Vitro17761767PubMedCrossRefGoogle Scholar
  35. Reeves, PG, Briske-Anderson, M, Johnson, L 2001Pre-treatment of Caco-2 cells with zinc during the differentiation phase alters the kinetics of zinc uptake and transport(2)J Nutr Biochem12674684PubMedCrossRefGoogle Scholar
  36. Reeves, PG, Briske-Anderson, M, Newman, SM,Jr 1996High zinc concentrations in culture media affect copper uptake and transport in differentiated human colon adenocarcinoma cellsJ Nutr12617011712PubMedGoogle Scholar
  37. Rossi, A, Poverini, R, Di Lullo, G, Modesti, A, Modica, A, Scarino, ML 1996Heavy metal toxicity following apical and basolateral exposure in the human intestinal cell line caco-2Toxicol In Vitro102736CrossRefPubMedGoogle Scholar
  38. Sahran, MJ, Roels, H, Lauwerys, R, Reyners, H, Gianfelicide Reyners, E 1986Influence of manganese on the gastrointestinal absorption of cadmium in ratsJ Appl Toxicol6313316Google Scholar
  39. Staessen, JA, Roels, HA, Emelianov, D, Kuznetsova, T, Thijs, L, Vangronsveld, J, Fagard, R 1999Environmental exposure to cadmium, forearm bone density, and risk of fractures: prospective population study. Public Health and Environmental Exposure to Cadmium (PheeCad) Study GroupLancet35311401144PubMedCrossRefGoogle Scholar
  40. Tallkvist, J, Bowlus, CL, Lonnerdal, B 2001DMT1 gene expression and cadmium absorption in human absorptive enterocytesToxicol Lett122171177PubMedCrossRefGoogle Scholar
  41. Templeton, DM 1990Cadmium uptake by cells of renal originJ Biol Chem2652176421770PubMedGoogle Scholar
  42. Torra, M, To-Figueras, J, Rodamilans, M, Brunet, M, Corbella, J 1995Cadmium and zinc relationships in the liver and kidney of humans exposed to environmental cadmiumSci Total Environ1705357PubMedCrossRefGoogle Scholar
  43. Watanabe, T, Iwami, O, Nakatsuka, H, Iguchi, H, Ikeda, M 1991Correlation of cadmium, copper, manganese, and zinc levels in the urine of people in nonpolluted areasJ Toxicol Environ Health33263272PubMedCrossRefGoogle Scholar
  44. White, RT, Kettisch, P, Kainrath, P 1998The high pressure asher: a high-performance sample decomposition system as an alternative to microwave-assisted digestionAtomic Spectroscopy19187192Google Scholar
  45. Yanagiya, T, Imura, N, Enomoto, S, Kondo, Y, Himeno, S 2000Suppression of a high-affinity transport system for manganese in cadmium-resistant metallothionein-null cellsJ Pharmacol Exp Therap29210801086Google Scholar
  46. Zweibaum, A, Chantret, I 1989

    Human colon carcinera cell lines as in vitro models for the study of cell differenciation

    Smith, MWSepulveda, FV eds. Adaptation and Development of Gastrointestinal FunctionManchester University PressManchester, UK103112
    Google Scholar
  47. Zweibaum, A, Laburthe, M, Grasset, E, Louvard, D 1991

    Use of cultured cell lines in studies of intestinal cell differentiation and function

    Frizzel, MFaRA eds. Handbook of Physiology: The Gastrointestinal SystemAm. Physiol. SocBethesda223255
    Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Laurent Noël
    • 1
  • Céline Huynh-Delerme
    • 2
  • Thierry Guérin
    • 1
  • Hélène Huet
    • 2
  • Jean-Marc Frémy
    • 1
  • Martine Kolf-Clauw
    • 3
  1. 1.Agence Française de Sécurité Sanitaire des Aliments (AFSSA)Unité Contaminants Inorganiques et Minéraux de l’Environnement (CIME) – Equipe Métaux Lourds et Eléments minéraux (MET)Maisons-Alfort cedexFrance
  2. 2.Laboratoire de Pharmacie-Toxicologie – Ecole Nationale Vétérinaire d’AlfortMaisons-Alfort cedexFrance
  3. 3.Ecole Nationale Vétérinaire de ToulouseToulouse Cedex 03France

Personalised recommendations