Advertisement

Biometals

, Volume 18, Issue 5, pp 467–474 | Cite as

Genome-Wide Screening of Aluminum Tolerance in Saccharomyces cerevisiae

  • Masayuki Kakimoto
  • Atsushi Kobayashi
  • Ryouichi Fukuda
  • Yasuke Ono
  • Akinori Ohta
  • Etsuro Yoshimura
Article

Abstract

Genome-wide screening has identified 37 Al-tolerance genes in Saccharomyces cerevisiae. These genes can be roughly categorised into three groups on the basis of function, i.e., genes related to vesicle transport processes, signal transduction pathways, and protein mannosylation. The largest group is composed of genes related to vesicle transport processes; severe Al sensitivity was found in yeast strains lacking these genes. The retrograde transport of endosome-derived vesicles back to the Golgi apparatus is an important factor in determining the Al tolerance of the vesicle transport system. The PKC1-MAPK cascade signalling pathway is important in the Al tolerance of signal transduction. The lack of the gene implicated in this process leads to weakened cell wall architecture, rendering the yeast Al-sensitive. Alternatively, Al might attack the cell wall and/or plasma membrane, and, as signalling is prevented in cells devoid of the genes related to signalling processes, the cells may be unable to alleviate the damage. The genes for protein mannosylation are also associated with Al tolerance, demonstrating the importance of cell wall architecture. These genes are involved in cell integrity processes.

Keywords

Al-tolerant genes PKC1-MAPK cascade protein mannosylation retrograde transport Saccharomyces cerevisiae 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abeliovich, H, Grote, E, Novick, P, Ferro-Novick, S 1998Tlg2p, a yeast syntaxin homolog that resides on the Golgi and endocytic structureJ Biol Chem2731171911727PubMedCrossRefGoogle Scholar
  2. Brady, D, Starke, AD, Duncan, JR 1994Chemical and enzymatic extraction of heavy metal binding polymers from isolated cell walls of Saccharomyces cerevisiae Biotech Bioengineer44297302CrossRefGoogle Scholar
  3. Bryant, NJ, James, DE 2001Vps45p stabilizes the syntaxin homologue Tlg2p and positively regulates SNARE complex formationEMBO J2033803388PubMedCrossRefGoogle Scholar
  4. Chang, M, French-Cornay, D, Fan, H-Y, Klein, H, Denis, CL, Jaehning, JA 1999A complex RNA polymerase II, Paf1p, Cdc73p, Hpr1p, and Ccr4p plays a role in protein kinase C signallingMol Cell Biol1910561067PubMedGoogle Scholar
  5. Cox, PA 1995The Elements on EarthOxford University PressOxfordGoogle Scholar
  6. Dürr, G, Strayle, J, Plemper, R, Elbs, S, Klee, SK, Catty, P, Wolf, DH, Rudolph, HK 1998The medial-Golgi ion pump Pmr1 supplies the yeast secretory pathway with Ca2+ and Mn2+ required for glycosylation, sorting, and endoplasmic reticulum-associated protein degradationMol Biol Cell911491162PubMedGoogle Scholar
  7. Ezaki, B, Gardner, RC, Ezaki, Y, Kondo, H, Matsumoto, H 1998Protective roles of two aluminum (Al)-induced genes, HSP150 and SED1 of Saccharomyces cerevisiae, in Al and oxidative stressFEMS Microbiol Lett15999105PubMedCrossRefGoogle Scholar
  8. Hamilton, CA, Good, AG, Taylor, GJ 2001Vacuolar H+-ATPase, but not mitochondrial F1F0-ATPase, is required for aluminum resistance in Saccharomyces cerevisiae FEMS Microbiol Lett205231236PubMedCrossRefGoogle Scholar
  9. Herrmann, JM, Malkus, P, Schekman, R 1999Out of the ER-outfitters, escorts and guidesTrend Cell Biol957CrossRefGoogle Scholar
  10. Igual, JC, Johnson, AL, Jonston, LH 1996Coordinated regulation of gene expression by the cell cycle transcription factor SWI4 and the protein kinase C MAP kinase pathway for yeast cell integrityEMBO J1550015013PubMedGoogle Scholar
  11. Jungmann, J, Rayner, JC, Munro, S 1999The Saccharomyces cerevisiae protein Mnn10p/Bed1p is a subunit of a Golgi mannosyltransferase complexJ Biol Chem27465796585PubMedCrossRefGoogle Scholar
  12. Lee, KS, Levin, DE 1992Dominant mutations in a gene encoding a putative protein kinase (BCK1) bypass the requirement for a Saccharomyces cerevisiae protein kinase C homologMol Cell Biol12172182PubMedGoogle Scholar
  13. Levin, DE, Errede, B 1995The proliferation of MAP kinase signaling pathway in yeastCurr Opin Cell Biol7197202PubMedCrossRefGoogle Scholar
  14. MacDiarmid, CW, Gardner, RC 1998Overexpression of the Saccharomyces cerevisiae magnesium transport system confers resistance to aluminum ionJ Biol Chem27317271732PubMedCrossRefGoogle Scholar
  15. Northwehr, SF, Bryant, NJ, Stevens, TH 1996The newly identified yeast GDR genes are required for retention of late-Golgi membrane proteinMol Cell Biol1627002707Google Scholar
  16. Otte, S, Belden, WJ, Heidtman, M, Liu, J, Jensen, ON, Barlowe, C 2001Erv41p and Erv 46: new component of COPII vesicles involved in transport between the ER and Golgi complexJ Cell Biol152503517PubMedCrossRefGoogle Scholar
  17. Schott, EJ, Gardner, RC 1997Aluminum-sensitive mutants of Saccharomyces cerevisiae Mol Gen Genet2546372PubMedCrossRefGoogle Scholar
  18. Siniossoglou, S, Peak-Chew, SY, Pelham, HRB 2000Ric1p and Rgp1p form a complex that catalyses nucleotide exchange on Ypt6pEMBO J1948854894PubMedCrossRefGoogle Scholar
  19. Siniossoglou, S, Pelham, HRB 2001An effector of Ypt6p binds the SNARE Tlg1p and mediates selective fusion of vesicles with late Golgi membranesEMBO J2059915998PubMedCrossRefGoogle Scholar
  20. Siniossoglou, S, Pelham, HRB 2002Vps51p links the VFT complex to SNARE Tlg1pJ Biol Chem2774831848324PubMedCrossRefGoogle Scholar
  21. Torre-Ruiz, MA, Torres, J, Ariño, J, Herrero, E 2002Sit4 is required for proper modulation of the biological functions mediated by Pkc1 and cell integrity pathway in Saccharomyces cerevisiae J Biol Chem2773346833476CrossRefGoogle Scholar
  22. Whyte, JRC, Munro, S 2001The Sec/34/35 Golgi transport complex is related to exocyst, defining a family of complexes involved in multiple steps of membrane trafficDev Cell1527537PubMedCrossRefGoogle Scholar
  23. Whyte, JRC, Munro, S 2002Vesicle tethering complexes in membrane trafficJ Cell Sci11526272637PubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Masayuki Kakimoto
    • 1
  • Atsushi Kobayashi
    • 1
  • Ryouichi Fukuda
    • 2
  • Yasuke Ono
    • 2
  • Akinori Ohta
    • 2
  • Etsuro Yoshimura
    • 1
  1. 1.Department of Applied Biological ChemistryThe University of TokyoTokyoJapan
  2. 2.Department of Biotechnology The University of TokyoTokyoJapan

Personalised recommendations