Biometals

, Volume 18, Issue 6, pp 643–650 | Cite as

Precipitation of Silver-Thiosulfate Complex and Immobilization of Silver by Cupriavidus metallidurans CH34

Article

Abstract

Cupriavidus metallidurans CH34 is a facultative chemolithotrophic bacterium that possesses two megaplasmids (pMOL28 and pMOL30) that confer resistance to eleven metals. The ability of Cupriavidus metallidurans CH34 to resist silver is described here. Electronic microscopy, energy-dispersive X-ray (EDX) and X-ray diffractometry (DRX) observations revealed that C. metallidurans CH34 strongly associated silver with the outer membrane, under chloride chemical form. Using derivate strains of C. metallidurans CH34, which carried only one or no megaplasmid, we show that this resistance seems to be carried by pMOL30.

Key words

Cupriavidus metallidurans CH34 plasmid pMOL30 silver 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrès, Y, Thouand, G, Boualam, M, Mergeay, M 2000Factors influencing the biosorption of gadolinium by micro-organisms and its mobilisation from sandAppl Microbiol Biotech54262267Google Scholar
  2. Chang, JS, Law, C, Chang, CC 1997Biosorption of lead, copper and cadmium by biomass of Pseudomonas aeruginosa PU21Water Res3116511658Google Scholar
  3. Chang, JS, Huang, JC 1998Selective absorption/recovery of Pb, Cu, and Cd with multiple fixed beds containing immobilized bacterial biomassBiotechnol Prog14735741PubMedGoogle Scholar
  4. Diels, L, Dong, Q, Lelie, D, Baeyens, W, Mergeay, M 1995aThe czc operon of Alcaligenes eutrophus CH34 from resistance mechanism to the removal of heavy metalsJ Ind Microbiol14142153CrossRefGoogle Scholar
  5. Diels, L, Roy, S, Somers, K, Willems, I, Doyen, W, Mergeay, M, Springael, D, Leysen, R 1995bThe use of bacteria immobilized in tubular membrane reactors for heavy metal recovery and degradation of chlorinated aromaticsJ Membrane Sci100249258CrossRefGoogle Scholar
  6. Diels, L, De Smet, M, Hooyberghs, L, Corbisier, P 1999Heavy metals bioremediation of soilMol Biotechnol12149158PubMedCrossRefGoogle Scholar
  7. Dong, Q, Springeal, D, Schoeters, J, Nuyts, G, Mergeay, M, Diels, L 1998Horizontal transfer of bacteria heavy metal resistance genes and its applications in activated sludge systemsWat Sci Technol37465468CrossRefGoogle Scholar
  8. Falla, JA, Bauda, P, Block, JC 1988Isolation of cell envelope of Pseudomonas fluorescensJ Microbiol Meth7285294CrossRefGoogle Scholar
  9. Franke, S, Grass, G, Rensing, C, Nies, HN 2003Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coliJ Bacteriol18538043812PubMedGoogle Scholar
  10. Grosse, C, Grass, G, Anton, A, Franke, S, Naavarette Santos, A, Lawley, B, Brown, N, Nies, DH 1999Transcriptional organization of the czc heavy-metal homeostasis determinant from Alcaligenes eutrophus CH34J Bacteriol18123852393PubMedGoogle Scholar
  11. Gupta, A, Matsui, K, Lo, JF, Silver, S 1999Molecular basis for resistance to silver cations in SalmonellaNature Med518388PubMedGoogle Scholar
  12. Gupta, A, Phung, LT, Taylor, DE, Silver, S 2001Diversity of silver resistance genes in IncH incompatibility group plasmidsMicrobiology14733933402PubMedGoogle Scholar
  13. Mergeay, M, Nies, D, Schlegel, HG, Gerits, J, Charles, P, Gijsegem, F 1985Alcaligenes eutrophus CH34 is a facultative chemiolithotroph with plasmid-bound resistance to heavy metalsJ Bacteriol102328334Google Scholar
  14. Mergeay, M, Monchy, S, Vallaeys, T, Auquier, V, Benotmane, A, Bertin, P, Taghavi, S, Dunn, J, VanDer Lelie, D, Wattiez, R 2003Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: towards a catalogue of metal-responsive genesFEMS Microbiol Rev27385410PubMedCrossRefGoogle Scholar
  15. Nies, D, Mergeay, M, Friedrich, B, Schlegel, HG 1987Cloning of plasmid genes encoding resistance to cadmium, zinc and cobalt in Alcaligenes eutrophus CH34J Bacteriol16948654868PubMedGoogle Scholar
  16. Nies, DH, Silver, S 1989Plasmid-determined inducible efflux is responsible for resistance to cadmium, zinc, and cobalt in Alcaligenes eutrophusJ Bacteriol171896900PubMedGoogle Scholar
  17. Nies, DH 1995The cobalt, zinc and cadmium efflux system Czc ABC from Alcaligenes eutrophus functions as a cation-proton antiporter in Escherichia coliJ Bacteriol17727072712PubMedGoogle Scholar
  18. Pethkar, AV, Paknikar, KM 2003Thiosulfate biodegradation-silver biosorption process for the treatment of photofilm processing wastewaterProcess Biochem38855860CrossRefGoogle Scholar
  19. Rensing, C, Fan, B, Sharma, R, Mitra, B, Rosen, BP 2000CopA: an Escherichia coli Cu(I)-translocating P-type ATPaseProc Natl Aca Sci USA97652656Google Scholar
  20. Roux, M, Sarret, G, Pignot-Paintrand, I, Covés, J 2001Mobilization of selenite by R. metallidurans CH34Appl Environ Microbiol67769773PubMedCrossRefGoogle Scholar
  21. Siddiqui, RA, Benthin, K, Schlegel, HG 1989Cloning of pMOL28-encoded nickel resistance genes and expression of the genes of Alcaligenes eutrophus and Pseudomonas sppJ Bacteriol17150715078PubMedGoogle Scholar
  22. Silver, S 2003Bacterial silver resistance/molecular biology and uses and misuses of silver compoundsFEMS Microbiol Rev27341353PubMedCrossRefGoogle Scholar
  23. Silver, S, Phung, LT 1996Bacterial heavy metal resistance: new surprisesAnnu Rev Microbiol50753789PubMedCrossRefGoogle Scholar
  24. Simmons, P, Singleton, I 1996A method to increase silver biosorption by an industrial strain of Saccharomyces cerevisiaeAppl Microbiol Biotechnol45278285PubMedCrossRefGoogle Scholar
  25. Solioz, M, Odermatt, A 1995Copper and silver transport by CopB-ATPase in membrane vesicles of Enterococcus hiraeJ Biol Chem27092179221PubMedCrossRefGoogle Scholar
  26. Stoyanov, JV, Magnani, D, Solioz, M 2003Measurement of cytoplasmic copper, silver, and gold with a lux biosensor shows copper and silver, but not gold, efflux by the CopA ATPase of Escherichia coliFEBS Lett546392394CrossRefGoogle Scholar
  27. Lelie, D, Schwuchow, T, Schwidetzky, U, Wuertz, S, Baeyens, W, Mergeay, M, Nies, DH 1997Two-component regulatory system involved in transcriptional control of heavy-metal homeostasis in Alcaligenes eutrophusMol Microbiol23493503PubMedGoogle Scholar
  28. Volesky, B 1990

    Biosorption and biosorbents

    Volesky, B eds. Biosorption of Heavy MetalsCRC. PressBoca Raton FL35
    Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.IUT Thionville-YutzLaboratoire d’Immunologie – Microbiologie (ESE-CNRS, UMR 7146)YutzFrance

Personalised recommendations