Biometals

, Volume 18, Issue 4, pp 399–405

Secondary Transporters for Nickel and Cobalt Ions: Theme and Variations

  • Thomas Eitinger
  • Jennifer Suhr
  • Lucy Moore
  • J. Andrew C. Smith
Article

Abstract

Nickel/cobalt transporters (NiCoTs), a family of secondary metal transporters in prokaryotes and fungi, are characterized by an eight-transmembrane-domain (TMD) architecture and mediate high-affinity uptake of cobalt and/or nickel ions into the cells. One of the strongly conserved regions within the NiCoTs is the signature sequence RHA(V/F)DADHI within TMD II. This stretch of amino acid residues plays an important role in the affinity, velocity and specificity of metal transport. Some relatives of the NiCoTs, named HupE, UreJ and UreH, contain a similar signature sequence and are encoded within or adjacent to [NiFe] hydrogenase or urease operons, or elsewhere in the genome of many prokaryotes. HupE and UreH from Rhodopseudomonas palustris CGA009 and UreJ from Cupriavidus necator H16 were shown to mediate Ni2+ transport upon heterologous production in E. coli. Other variants of NiCoTs are found in many marine cyanobacteria and in plants. The cyanobacterial proteins are encoded by a segment adjacent to the genes for [Ni] superoxide dismutase and a corresponding putative maturation peptidase. The plant proteins contain N-terminal sequences resembling bipartite transit peptides of thylakoid lumenal and thylakoid integral membrane precursor proteins; expression of a YFP-fusion protein in transfected leaf cells is consistent with targeting of this protein to the plastid, but the function of the plant gene product has yet to be demonstrated.

Keywords

cobalt hydrogenase metal transport nickel plastid superoxide dismutase urease 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baginsky, C, Palacios, JM, Imperial, J, Ruiz-Argüeso, T, Brito, B 2004Molecular and functional characterization of the Azorhizobium caulinodans ORS571 hydrogenase gene clusterFEMS Microbiol Lett237399405CrossRefPubMedGoogle Scholar
  2. Barondeau, DA, Kassmann, DJ, Bruns, CK, Tainer, JA, Getzoff, ED 2004Nickel superoxide dismutase structure and mechanismBiochemistry4380388047CrossRefPubMedGoogle Scholar
  3. Batoko, H, Zheng, H-Q, Hawes, C, Moore, I 2000A Rab1 GTPase is required for transport between the endoplasmic reticulum and Golgi apparatus and for normal Golgi movement in plantsPlant Cell1222012217CrossRefPubMedGoogle Scholar
  4. Bendtsen, JD, Nielsen, H, Heijne, G, Brunak, S 2004Improved prediction of signal peptidesJ Mol Biol340783795PubMedGoogle Scholar
  5. Bossé, JT, Gilmour, HD, MacInnes, JI 2001Novel genes affecting urease activity in Actinobacillus pleuropneumoniaeJ Bacteriol18312421247CrossRefPubMedGoogle Scholar
  6. Chen, YY, Burne, RA 2003Identification and characterization of the nickel uptake system for urease biogenesis in Streptococcus salivarius 57.IJ Bacteriol18567736779CrossRefPubMedGoogle Scholar
  7. Degen, O, Kobayashi, M, Shimizu, S, Eitinger, T 1999Selective transport of divalent cations by transition metal permeases: The Alcaligenes eutrophus HoxN and the Rhodococcus rhodochrous NhlFArch Microbiol171139145CrossRefPubMedGoogle Scholar
  8. Degen, O, Eitinger, T 2002Substrate specificity of nickel/cobalt permeases: insights from mutants altered in transmembrane domains I and IIJ Bacteriol18435693577CrossRefPubMedGoogle Scholar
  9. Dufresne, A, Salanoubat, M, Partensky, F,  et al. 2003Genome sequence of the cyanobacterium Prochlorococcus marinus SS120, a nearly minimal oxyphototrophic genomeProc Natl Acad Sci USA1001002010025CrossRefPubMedGoogle Scholar
  10. Eitinger, T 2001

    Microbial nickel transport

    Winkelmann, G, eds. Microbial Transport SystemsWiley-VCHWeinheim397417
    Google Scholar
  11. Eitinger, T, Mandrand-Berthelot, M-A 2000Nickel transport systems in microorganismsArch Microbiol17319CrossRefPubMedGoogle Scholar
  12. Eitinger, T 2004In vivo production of active nickel superoxide dismutase from Prochlorococcus marinus MIT9313 is dependent on its cognate peptidaseJ Bacteriol18678217825CrossRefPubMedGoogle Scholar
  13. Eitinger, T, Wolfram, L, Degen, O, Anthon, C 1997A Ni2+ binding motif is the basis of high-affinity transport of the Alcaligenes eutrophus nickel permeaseJ Biol Chem2721713917144CrossRefPubMedGoogle Scholar
  14. Eitinger, T, Degen, O, Böhnke, U, Müller, M 2000Nic1p, a relative of bacterial transition metal permeases in Schizosaccharomyces pombe, provides nickel ion for urease biosynthesisJ Biol Chem2751802918033CrossRefPubMedGoogle Scholar
  15. Emanuelsson, O, Nielsen, H, Brunak, S, Heijne, G 2000Predicting subcellular localization of proteins based on their N-terminal amino acid sequenceJ Mol Biol30010051016CrossRefPubMedGoogle Scholar
  16. Emanuelsson, O, Nielsen, H, Heijne, G 1999ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sitesProt Sci8978984Google Scholar
  17. Fuhrmann, S, Ferner, M, Jeffke, T, Henne, A, Gottschalk, G, Meyer, O 2003Complete nucleotide sequence of the circular megaplasmid pHCG3 of Oligotropha carboxidovorans: function in the chemolithoautotrophic utilization of CO, H2 and CO2Gene3226775CrossRefPubMedGoogle Scholar
  18. Gómez, SM, Bil’, KY, Aguilera, R, Nishio, JN, Faull, KF, Whitelegge, JP 2003Transit peptide cleavage sites of integral thylakoid membrane proteinsMol Cell Proteomics210681085CrossRefPubMedGoogle Scholar
  19. Hebbeln, P, Eitinger, T 2004Heterologous production and characterization of bacterial nickel/cobalt permeasesFEMS Microbiol Lett230129135CrossRefPubMedGoogle Scholar
  20. Hidalgo, E, Palacios, JM, Murillo, J, Ruiz-Argüeso, T 1992Nucleotide sequence and characterization of four additional genes of the hydrogenase structural operon from Rhizobium leguminosarum bv. viciaeJ Bacteriol17441304139PubMedGoogle Scholar
  21. Kobayashi, M, Shimizu, S 1999Cobalt proteinsEur J Biochem26119CrossRefPubMedGoogle Scholar
  22. Maeda, M, Hidaka, M, Nakamura, A, Masaki, H, Uozumi, T 1994Cloning, sequencing, and expression of thermophilic Bacillus sp. strain TB-90 urease gene complex in Escherichia coliJ Bacteriol176432442PubMedGoogle Scholar
  23. McMillan, DJ, Mau, M, Walker, MJ 1998Characterisation of the urease gene cluster in Bordetella bronchisepticaGene208243251CrossRefPubMedGoogle Scholar
  24. Mulrooney, SB, Hausinger, RP 2003Nickel uptake and utilization by microorganismsFEMS Microbiol Rev27239261CrossRefPubMedGoogle Scholar
  25. Nagai, T, Ibata, K, Park, ES, Kubota, M, Mikoshiba, K, Miyawaki, A 2002A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applicationsNature Biotechnol208790CrossRefGoogle Scholar
  26. Palenik, B, Brahamsha, B, Larimer, FW,  et al. 2003The genome of a motile marine SynechococcusNature42410371042Google Scholar
  27. Rocap, G, Larimer, FW, Lamerdin, J,  et al. 2003Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiationNature42410421047CrossRefPubMedGoogle Scholar
  28. Rodionov, DA, Vitreschak, AG, Mironov, AA, Gelfand, MS 2003Comparative genomics of the vitamin B12 metabolism and regulation in prokaryotesJ Biol Chem2784114841159CrossRefPubMedGoogle Scholar
  29. Roth, JR, Lawrence, JG, Rubenfield, M, Kieffer-Higgins, S, Church, GM 1993Characterization of the cobalamin (vitamin B12) biosynthetic genes of Salmonella typhimuriumJ Bacteriol17533033316PubMedGoogle Scholar
  30. Schleiff, E, Klösgen, RB 2001Without a little help from ‘my’ friends: direct insertion of proteins into chloroplast membranes?Biochim Biophys Acta15412233CrossRefPubMedGoogle Scholar
  31. Tissier, C, Woolhead, CA, Robinson, C 2002Unique structural determinants in the signal peptide of “spontaneously” inserting thylakoid membrane proteinsEur J Biochem26931313141CrossRefPubMedGoogle Scholar
  32. Venter, JC, Remington, K, Heidelberg, JF,  et al. 2004Environmental genome shotgun sequencing of the Sargasso SeaScience3046674CrossRefPubMedGoogle Scholar
  33. Wuerges, J, Lee, J-W, Yim, YI, Yim, H-S, Kang, S-O, Djinovic Carugo, K 2004Crystal structure of nickel-containing superoxide dismutase reveals another type of active siteProc Natl Acad Sci USA10185698574CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Thomas Eitinger
    • 1
  • Jennifer Suhr
    • 1
    • 3
  • Lucy Moore
    • 2
  • J. Andrew C. Smith
    • 2
  1. 1.Institut für Biologie/MikrobiologieHumboldt-Universität zu BerlinBerlinGermany
  2. 2.Department of Plant SciencesUniversity of OxfordOxfordUK
  3. 3.Experimentelle Anästhesiologie, Campus Mitte, Standort WestendCharité – Universitätsmedizin BerlinBerlinGermany

Personalised recommendations