, Volume 18, Issue 4, pp 369–374

Marine Siderophores and Microbial Iron Mobilization



Iron is essential for the growth of nearly all microorganisms yet iron is only sparingly soluble near the neutral pH, aerobic conditions in which many microorganisms grow. The pH of ocean water is even higher, thereby further lowering the concentration of dissolved ferric ion. To compound the problem of availability, the total iron concentration is surprisingly low in surface ocean water, yet nevertheless, marine microorganisms still require iron for growth. Like terrestrial bacterial, bacteria isolated from open ocean water often produce siderophores, which are low molecular weight chelating ligands that facilitate the microbial acquisition of iron. The present review summarizes the structures of siderophores produced by marine bacteria and the emerging characteristics that distinguish marine siderophores.

Key words

Photoreactive amphiphilic marine siderophores 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albrecht-Gary, AM, Crumbliss, AL 1998The coordination chemistry of siderophores: thermodynamics and kinetics of iron chelation and releaseMetal Ions Biol Syst35239327Google Scholar
  2. Barbeau, K, Rue, EL, Bruland, KW, Butler, A 2001Photochemical cycling of iron in the surface ocean mediated by microbial iron(III)-binding ligandsNature413409413CrossRefPubMedGoogle Scholar
  3. Barbeau, K, Zhang, G, Live, DH, Butler, A 2002Petrobactin, a photoreactive siderophore produced by the oil-degrading marine bacterium Marinobacter hydrocarbonoclasticusJ Am Chem Soc124378379CrossRefPubMedGoogle Scholar
  4. Barbeau, K, Rue, EL, Trick, CG, Bruland, KW, Butler, A 2003The photochemical reactivity of siderophores produced by marine heterotrophic bacteria and cyanobacteria based on characteristic iron(III)-binding groupsLimnol Oceanogr4810691078Google Scholar
  5. Bergeron, RJ, Huang, G, Smith, RE,  et al. 2003Total synthesis and structure revision of petrobactinTetrahedron5920072014CrossRefGoogle Scholar
  6. Boyd, PW, Law, CS, Wong, CS,  et al. 2004The decline and fate of an iron-induced subarctic phytoplankton bloomNature428549553CrossRefPubMedGoogle Scholar
  7. Boyd, PW, Watson, AJ, Law, CS,  et al. 2000A mesoscale phytoplankton bloom in the polar Southern ocean stimulated by iron fertilizationNature407695702CrossRefPubMedGoogle Scholar
  8. Coale, KH, Johnson, KS, Chavez, FP,  et al. 2004Southern ocean iron enrichment experiment: carbon cycling in high- and low-Si watersScience304408414CrossRefPubMedGoogle Scholar
  9. Coale, KH, Johnson, KS, Fitzwater, SE,  et al. 1996A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific OceanNature383495501CrossRefGoogle Scholar
  10. Crosa JH et al. 2004 Iron transport in bacteria, AMS Press and chapters therein.Google Scholar
  11. Debaar, HJW, Dejong, JTM, Bakker, DCE,  et al. 1995Importance of iron for plankton blooms and carbon dioxide drawdown in the Southern oceanNature373412415CrossRefGoogle Scholar
  12. Fadeev, EA, Luo, M, Groves, JT 2004Synthesis, structure, and molecular dynamics of gallium complexes of schizokinen and the amphiphilic siderophore acinetoferrinJ Am Chem Soc1261206512075CrossRefPubMedGoogle Scholar
  13. Field, CB, Behrenfeld, MJ, Randerson, JT, Falkowski, P 1998Primary production of the biosphere: integrating terrestrial and oceanic componentsScience281237240CrossRefPubMedGoogle Scholar
  14. Gledhill, M, Vandenberg, CMG 1994Determination of complexation of iron(III) with natural organic complexing ligands in seawater using cathodic stripping voltammetryMar Chem474154CrossRefGoogle Scholar
  15. Gobin, J, Horwitz, MA 1996Exochelins of Mycobacterium tuberculosis remove iron from human iron-binding proteins and donate iron to mycobactins in the M. tuberculosis cell wallJ Exp Med18315271532CrossRefPubMedGoogle Scholar
  16. Haag, H, Fiedler, HP, Meiwes, J, Drechsel, H, Jung, G, Zähner, H 1994Isolation and biological characterization of staphyloferrin B, a compound with siderophore activity from staphylococciFEMS Microbiol Lett115125130CrossRefPubMedGoogle Scholar
  17. Haygood, MG, Holt, PD, Butler, A 1993Aerobactin production by a planktonic marine Vibrio spLimnol Oceanogr3810911097Google Scholar
  18. Hickford, SJH, Kupper, FC, Zhang, G, Carrano, CJ, Blunt, JW, Butler, A 2004Petrobactin sulfonate, a new siderophore produced by the marine bacterium Marinobacter hydrocarbonoclasticusJ Natl Prod6718971899CrossRefGoogle Scholar
  19. Johnson, KS, Gordon, RM, Coale, KH 1997What controls dissolved iron concentration in the world ocean?Mar Chem57137161CrossRefGoogle Scholar
  20. Kanoh, K, Kamino, K, Leleo, G, Adachi, K, Shizuri, Y 2003Pseudoalterobactins A and B, new siderophores excreted by marine bacterium Pseudoalteromonas sp KP20–4J. Antibiotics56871875Google Scholar
  21. Kokubo, S, Suenaga, K, Shinohara, C, Tsuji, T, Uemura, D 2000Structures of amamistatins A and B, novel growth inhibitors of human tumor cell lines from Nocardia asteroidesTetrahedron5664356440CrossRefGoogle Scholar
  22. Kunze, B, Trowitzschkienast, W, Hofle, G, Reichenbach, H 1992Antibiotics from gliding bacteria. 46. Nannochelin A, nannochelin B and nannochelin C, new iron-chelating compounds from Nannocystis exedens (Myxobacteria) production, isolation, physicochemical and biological propertiesJ Antibiot45147150PubMedGoogle Scholar
  23. Luo, M, Fadeev, EA, Groves, J 2005Membrane dynamics of the amphiphilic siderophore, acinetoferrinJ Am Chem Soc12717261736CrossRefPubMedGoogle Scholar
  24. Macrellis, HM, Trick, CG, Rue, EL, Smith, G, Bruland, GW 2001Collection and detection of natural iron binding ligands from seawaterMar Chem76175187CrossRefGoogle Scholar
  25. Martin, JH 1990Glacial-interclacial CO2 change: the iron hypothesisPaleoceanography5113Google Scholar
  26. Martin, JH, Coale, KH, Johnson, KS,  et al. 1994Testing the iron hypothesis in ecosystems of the equatorial Pacific OceanNature371123129Google Scholar
  27. Martin, JH, Fitzwater, SE 1988Iron deficiency limits phytoplankton growth in the north-east Pacific subarcticNature331341343Google Scholar
  28. Martin, JH, Gordon, RM, Fitzwater, SE 1991The case for ironLimnol Oceanogr3617931802Google Scholar
  29. Martinez, JS, Carter-Franklin, JN, Mann, EL,  et al. 2003Structure and membrane affinity of a suite of amphiphilic siderophores produced by a marine bacteriumProc Natl Acad Sci USA10037543759CrossRefPubMedGoogle Scholar
  30. Martinez, JS, Zhang, GP, Holt, PD,  et al. 2000Self-assembling amphiphilic siderophores from marine bacteriaScience28712451247CrossRefPubMedGoogle Scholar
  31. Meyer, JM, Van, VT, Stintzi, A, Berge, O, Winkelmann, G 1995Ornibactin production and transport properties in strains of Burkholderia vietnamiensis and Burkholderia cepacia(formerly Pseudomonas cepacia)Biometals8309317CrossRefPubMedGoogle Scholar
  32. Morel, FMM, Price, NM 2003The biogeochemical cycles of trace metals in the oceansScience300944947CrossRefPubMedGoogle Scholar
  33. Murakami, Y, Kato, S, Nakajima, M,  et al. 1996Formobactin, a novel free radical scavenging and neuronal cell protecting substance from Nocardia spJ Antibiot(Tokyo)49839845Google Scholar
  34. Münzinger, M, Budzikiewicz, H, Expert, D, Enard, C, Meyer, JM 2000Achromobactin, a new citrate siderophore of Erwinia chrysanthemiZ Naturforsch, C: Bioscience55328332Google Scholar
  35. Okujo, N, Sakakibara, Y, Yoshida, T, Yamamoto, S 1994Structure of acinetoferrin, a new citrate-based dihydroxamate siderophore from Acinetobacter haemolyticusBiometals7170176PubMedGoogle Scholar
  36. Persmark, M, Pittman, P, Buyer, JS,  et al. 1993Isolation and structure of rhizobactin 1021, a siderophore from the alfalfa symbiont Rhizobium meliloti 1021J Am Chem Soc11539503956CrossRefGoogle Scholar
  37. Ratledge, C, Patel, PV 1976Isolation, properties and taxonomic relevance of lipid-soluble, iron-binding compounds (nocobactins) from NocardiaJ Gen Microbiol93141152PubMedGoogle Scholar
  38. Ratledge, C, Dale, J 1999Mycobacteria: molecular biology and virulenceBlackwell Science Ltd.Oxford, UKGoogle Scholar
  39. Risse, D, Beiderbeck, H, Taraz, K, Budzikiewicz, H, Gustine, D 1998Corrugatin, a lipopeptide siderophore from Pseudomonas corrugataZ Naturforsch, C: Bioscience53295304Google Scholar
  40. Rue, EL, Bruland, KW 1995Complexation of iron(III) by natural organic ligands in the Central North Pacific as determined by a new competitive ligand equilibration/adsorptive cathodic stripping voltammetric methodMar Chem50117138CrossRefGoogle Scholar
  41. Rue, EL, Bruland, KW 1997The role of organic complexation on ambient iron chemistry in the equatorial Pacific Ocean and the response of a mesoscale iron addition experimentLimnol Oceanogr42901910Google Scholar
  42. Stephan, H, Freund, S, Beck, W, Jung, G, Meyer, JM, Winkelmann, G 1993Ornibactins – a new family of siderophores from PseudomonasBiometals693100CrossRefPubMedGoogle Scholar
  43. Suenaga, K, Kokubo, S, Shinohara, C, Tsuji, T, Uemura, D 1999Structures of amamistatins A and B, novel growth inhibitors of human tumor cell lines from an actinomyceteTetrahedron Lett4019451948CrossRefGoogle Scholar
  44. Tsuda, A, Takeda, S, Saito, H,  et al. 2003A mesoscale iron enrichment in the western subarctic Pacific induces a large centric diatom bloomScience300958961CrossRefPubMedGoogle Scholar
  45. Winkelmann, G 2002Microbial siderophore-mediated transportBiochem Soc Trans30691696CrossRefPubMedGoogle Scholar
  46. Wu, J, Luther, GW 1995Complexation of Fe(III) by natural organic ligands in the Northwest Atlantic Ocean by a competitive ligand equilibration method and a kinetic approachMar Chem50159177CrossRefGoogle Scholar
  47. Yamamoto, S, Okujo, N, Yoshida, T, Matsuura, S, Shinoda, S 1994Structure and iron transport activity of vibrioferrin, a new siderophore of Vibrio parahaemolyticusJ Biochem (Tokyo)115868874Google Scholar
  48. Xu, G, Martinez, JS, Groves, JT, Butler, A 2002Membrane affinity of the amphiphilic marinobactin siderophoresJ Am Chem Soc1241340813415CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations