, Volume 18, Issue 4, pp 313–317 | Cite as

ZnT-8, A Pancreatic Beta-Cell-Specific Zinc Transporter

  • Fabrice Chimienti
  • Alain Favier
  • Michel SeveEmail author


The zinc content in the pancreatic beta cell is among the highest of the body. Zinc appears to be an important metal for insulin-secreting cells as insulin is stored inside secretory vesicles as a solid hexamer bound with two Zn2+ ions per hexamer. Zinc is also an important component of insulin secretion mechanisms and is likely to modulate the function of neighbouring cells via paracrine/autocrine interactions. Therefore beta cells undoubtedly need very efficient and specialized transporters to accumulate sufficient amounts of zinc in secretion vesicles. We report here the discovery and the characteristics of a new zinc transporter, ZnT-8, belonging to the CDF (Cation Diffusion Facilitator) family and expressed only in pancreatic beta cells. This transporter, localized in secretion vesicles membrane, facilitates the accumulation of zinc from the cytoplasm into intracellular insulin-containing vesicles and is a major component for providing zinc to insulin maturation and/or storage processes in insulin-secreting pancreatic beta cells. We discovered mammalian orthologs (rat, mouse, chimpanzee, and dog) and found these ZnT-8 proteins very similar (98% conserved amino acids) to human ZnT-8, indicating a high conservation during evolution.

Key words

beta cell insulin Langerhans islets pancreas zinc zinc transport zinc transporter 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bancila V, Cens T, Monnier D, et al. 2004 Two SUR1-specific histidine residues mandatory for zinc-induced activation of the rat KATP channel. J Biol Chem, published online ahead of print December 21, 2004.Google Scholar
  2. Chausmer, AB 1998Zinc, insulin and diabetesJ Am Coll Nutr17109115PubMedGoogle Scholar
  3. Chimienti, F, Aouffen, M, Favier, A, Seve, M 2003Zinc homeostasis-regulating proteins: new drug targets for triggering cell fateCurr Drug Targets4323338CrossRefPubMedGoogle Scholar
  4. Chimienti, F, Devergnas, S, Favier, A, Seve, M 2004Identification and cloning of a beta-cell-specific zinc transporter, ZnT-8, localized into insulin secretory granulesDiabetes5323302337PubMedGoogle Scholar
  5. Dodson, G, Steiner, D 1998The role of assembly in insulin’s biosynthesisCurr Opin Struct Biol8189194CrossRefPubMedGoogle Scholar
  6. Eide, DJ 2004The SLC39 family of metal ion transportersPflugers Arch447796800CrossRefPubMedGoogle Scholar
  7. Emdin, SO, Dodson, GG, Cutfield, JM, Cutfield, SM 1980Role of zinc in insulin biosynthesis. Some possible zinc-insulin interactions in the pancreatic B-cellDiabetologia19174182CrossRefPubMedGoogle Scholar
  8. Frederickson, CJ, Bush, AI 2001Synaptically released zinc: physiological functions and pathological effectsBiometals14353366CrossRefPubMedGoogle Scholar
  9. Gold, G, Grodsky, GM 1984Kinetic aspects of compartmental storage and secretion of insulin and zincExperientia4011051114CrossRefPubMedGoogle Scholar
  10. Ho, LH, Ruffin, RE, Murgia, C,,  et al. 2004Labile zinc and zinc transporter ZnT4 in mast cell granules: role in regulation of caspase activation and NF-kappaB translocationJ Immunol17277507760PubMedGoogle Scholar
  11. Huang, L, Gitschier, J 1997A novel gene involved in zinc transport is deficient in the lethal milk mouseNat Genet17292297PubMedGoogle Scholar
  12. Huang, L, Kirschke, CP, Gitschier, J 2002Functional characterization of a novel mammalian zinc transporter, ZnT6J Biol Chem2772638926395CrossRefPubMedGoogle Scholar
  13. Inoue, K, Matsuda, K, Itoh, M,,  et al. 2002Osteopenia and male-specific sudden cardiac death in mice lacking a zinc transporter gene, Znt5Hum Mol Genet1117751784CrossRefPubMedGoogle Scholar
  14. Ishihara, H, Maechler, P, Gjinovci, A, Herrera, PL, Wollheim, CB 2003Islet beta-cell secretion determines glucagon release from neighbouring alpha-cellsNat Cell Biol5330335CrossRefPubMedGoogle Scholar
  15. Kambe, T, Narita, H, Yamaguchi-Iwai, Y,,  et al. 2002Cloning and characterization of a novel mammalian zinc transporter, zinc transporter 5, abundantly expressed in pancreatic beta cellsJ Biol Chem2771904919055CrossRefPubMedGoogle Scholar
  16. Kirschke, CP, Huang, L 2003ZnT7, a novel mammalian zinc transporter, accumulates zinc in the Golgi apparatusJ Biol Chem27840964102CrossRefPubMedGoogle Scholar
  17. Liuzzi, JP, Blanchard, RK, Cousins, RJ 2001Differential regulation of zinc transporter 1, 2, and 4 mRNA expression by dietary zinc in ratsJ Nutr1314652PubMedGoogle Scholar
  18. Liuzzi, JP, Cousins, RJ 2004Mammalian zinc transportersAnnu Rev Nutr24151172CrossRefPubMedGoogle Scholar
  19. Maret, W 2003Cellular zinc and redox states converge in the metallothionein/thionein pairJ Nutr1331460S1462SPubMedGoogle Scholar
  20. Murgia, C, Vespignani, I, Cerase, J, Nobili, F, Perozzi, G 1999Cloning, expression, and vesicular localization of zinc transporter Dri 27/ZnT4 in intestinal tissue and cellsAm J Physiol277G1231G1239PubMedGoogle Scholar
  21. Palmiter, RD, Cole, TB, Findley, SD 1996ZnT-2, a mammalian protein that confers resistance to zinc by facilitating vesicular sequestrationEmbo J1517841791PubMedGoogle Scholar
  22. Palmiter, RD, Cole, TB, Quaife, CJ, Findley, SD 1996ZnT-3, a putative transporter of zinc into synaptic vesiclesProc Natl Acad Sci USA931493414939CrossRefPubMedGoogle Scholar
  23. Palmiter, RD, Findley, SD 1995Cloning and functional characterization of a mammalian zinc transporter that confers resistance to zincEmbo J14639649PubMedGoogle Scholar
  24. Qian, WJ, Aspinwall, CA, Battiste, MA, Kennedy, RT 2000Detection of secretion from single pancreatic beta-cells using extracellular fluorogenic reactions and confocal fluorescence microscopyAnal Chem72711717CrossRefPubMedGoogle Scholar
  25. Seve, M, Chimienti, F, Devergnas, S, Favier, A 2004In silico identification and expression of SLC30 family genes: an expressed sequence tag data mining strategy for the characterization of zinc transporters’ tissue expressionBMC Genomics532CrossRefPubMedGoogle Scholar
  26. Sim del, LC, Yeo, WM, Chow, VT 2002The novel human HUEL (C4orf1) protein shares homology with the DNA-binding domain of the XPA DNA repair protein and displays nuclear translocation in a cell cycle-dependent mannerInt J Biochem Cell Biol34487504CrossRefPubMedGoogle Scholar
  27. Suzuki, T, Ishihara, K, Migaki, H,  et al. 2005Zinc transporters, ZnT5 and ZnT7, are required for the activation of alkaline phosphatases, zinc-requiring enzymes that are GPI-anchored to cytoplasmic membraneJ Biol Chem280637643PubMedGoogle Scholar
  28. Tarasov, A, Dusonchet, J, Ashcroft, F 2004Metabolic regulation of the pancreatic beta-cell ATP-sensitive K+ channel: a pas de deuxDiabetes53S113S122PubMedGoogle Scholar
  29. Thompson, JD, Higgins, DG, Gibson, TJ 1994CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choiceNucleic Acids Res2246734680PubMedGoogle Scholar
  30. Vallee, BL, Falchuk, KH 1993The biochemical basis of zinc physiologyPhysiol Rev7379118PubMedGoogle Scholar
  31. Wenzel, HJ, Cole, TB, Born, DE, Schwartzkroin, PA, Palmiter, RD 1997Ultrastructural localization of zinc transporter-3 (ZnT-3) to synaptic vesicle membranes within mossy fiber boutons in the hippocampus of mouse and monkeyProc Natl Acad Sci USA941267612681CrossRefPubMedGoogle Scholar
  32. Xia, X, Xie, Z 2001DAMBE: software package for data analysis in molecular biology and evolutionJ Hered92371373CrossRefPubMedGoogle Scholar
  33. Zalewski, PD, Millard, SH, Forbes, IJ,,  et al. 1994Video image analysis of labile zinc in viable pancreatic islet cells using a specific fluorescent probe for zincJ Histochem Cytochem42877884PubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Laboratoire des lésions des acides nucléiquesDRFMC/SCIB/LAN, CEA/GrenobleCEDEX 9France

Personalised recommendations