Advertisement

Biometals

, Volume 18, Issue 6, pp 627–641 | Cite as

Responses to Nickel in the Proteome of the Hyperaccumulator Plant Alyssum lesbiacum

  • Robert A. IngleEmail author
  • J. Andrew C. Smith
  • Lee J. Sweetlove
Article

Abstract

A proteomic analysis of the Ni hyperaccumulator plant Alyssum lesbiacum was carried out to identify proteins that may play a role in the exceptional degree of Ni tolerance and accumulation characteristic of this metallophyte. Of the 816 polypeptides detected in root tissue by 2D SDS-PAGE, eleven increased and one decreased in abundance relative to total protein after 6-week-old plants were transferred from a standard nutrient solution containing trace concentrations of Ni to a moderately high Ni treatment (0.3 mM NiSO4) for 48 h. These polypeptides were identified by tandem mass spectrometry and the majority were found to be involved in sulphur metabolism (consistent with a re-allocation of sulphur towards cysteine and glutathione), protection against reactive oxygen species, or heat-shock response. In contrast, very few polypeptides were found to change in abundance in root or shoot tissue after plants were exposed for 28 days to 0.03 mM NiSO4, a concentration representing the optimum for growth of this species but sufficient to lead to hyperaccumulation of Ni in the shoot. Under these conditions, constitutively expressed genes in this highly Ni-tolerant species may be sufficient to allow for effective chelation and sequestration of Ni without the need for additional protein synthesis.

Key words

Alyssum lesbiacum hyperaccumulation metal tolerance nickel oxidative stress proteomics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adessi, C, Miege, C, Albrieux, C, Rabilloud, T 1997Two-dimensional electrophoresis of membrane proteins: a current challenge for immobilised pH gradientsElectrophoresis18127135PubMedCrossRefGoogle Scholar
  2. Assunção, AGL, DaCosta Martins, P, De Folter, S, Vooijs, R, Schat, H, Aarts, MGM 2001Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens Plant Cell Environ24217226Google Scholar
  3. Baccouch, S, Chaoui, A, El Ferjani, E 2001Nickel toxicity induces oxidative damage in Zea mays rootsJ Plant Nutr2410851097CrossRefGoogle Scholar
  4. Baker, AJM, Brooks, RR 1989Terrestrial higher plants which hyperacummulate metallic elements – a review of their distribution, ecology and phytochemistryBiorecovery181126Google Scholar
  5. Baker, AJM, McGrath, SP, Reeves, R, Smith, JAC 2000Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soilsTerry, NBañuelos, G eds. Phytoremediation of Contaminated Soil and WaterBoca RatonLewis Publishers85107Google Scholar
  6. Becher, M, Talke, IN, Krall, L, Krämer, U 2004Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri Plant J35251268Google Scholar
  7. Bernacchia, G, Schwall, G, Lottspeich, F, Salamini, F, Bartels, D 1995The transketolase gene family of the resurrection plant Craterostigma plantagineum – differential expression during the rehydration phaseEMBO J14610618PubMedGoogle Scholar
  8. Bernard, C, Roosens, N, Czernic, P, Lebrun, M, Verbruggen, N 2004A novel CPx-ATPase from the cadmium hyperaccumulator Thlaspi caerulescens FEBS Lett569140148PubMedCrossRefGoogle Scholar
  9. Besson, V, Neuburger, M, Rebeille, F, Douce, R 1995Evidence for three serine hydroxymethyltransferases in green leaf-cells – purification and characterization of the mitochondrial and chloroplastic isoformsPlant Physiol Biochem33665673Google Scholar
  10. Boominathan, R, Doran, PM 2002Ni-induced oxidative stress in roots of the Ni hyperaccumulator, Alyssum bertolonii New Phytol156205215CrossRefGoogle Scholar
  11. Boyd, RS 1998Hyperaccumulation as a plant defensive strategyBrooks, RR eds. Plants that. Hyperaccumulate Heavy MetalsWallingfordCAB International181201Google Scholar
  12. Brooks, RR, Morrison, RS, Reeves, RD, Dudley, TR, Akman, Y 1979Hyperaccumulation of nickel by Alyssum Linnaeus (Cruciferae)Proc R Soc Lond B203387403PubMedCrossRefGoogle Scholar
  13. Bryk, R, Lima, CD, Erdjument-Bromage, H, Tempst, P, Nathan, C 2002Metabolic enzymes of mycobacteria linked to antioxidant defense by a thioredoxin-like proteinScience29510731077PubMedCrossRefGoogle Scholar
  14. Chen, CY, Huang, YL, Lin, TH 1998Lipid peroxidation in liver of mice administrated with nickel chloride: with special reference to trace elements and antioxidantsBiol Trace Elem Res61193205PubMedGoogle Scholar
  15. Chen, C-Y, Su, Y-J, Wu, P-F, Shyu, M-M 2002Nickel-induced plasma lipid peroxidation and effect of antioxidants in human blood: involvement of hydroxyl radical formation and depletion of α-tocopherolJ Toxicol Environ Health A65843852PubMedGoogle Scholar
  16. Chen, C-Y, Wang, Y-F, Lin, Y-H, Yen, S-F 2003Nickel-induced oxidative stress and effect of antioxidants in human lymphocytesArch Toxicol77123130PubMedCrossRefGoogle Scholar
  17. Clemens, S, Palmgren, M, Krämer, U 2002A long way ahead: understanding and engineering plant metal accumulationTrends Plant Sci7309315PubMedCrossRefGoogle Scholar
  18. Cobbett, CS, Goldsbrough, P 2002Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasisAnn Rev Plant Biol53159182Google Scholar
  19. Coleman, JOD, Blake-Kalff, MMA, Davies, TGE 1997Detoxification of xenobiotics by plants: chemical modification and vacuolar compartmentationTrends Plant Sci2144151CrossRefGoogle Scholar
  20. Domínguez-Solís, JR, Gutiérrez-Alcalá, G, Romero, LC, Gotor, C 2001The cytosolic O-acetylserine(thiol)lyase gene is regulated by heavy metals and can function in cadmium toleranceJ Biol Chem27692979302PubMedGoogle Scholar
  21. Dormer, UH, Westwater, J, McLaren, NF, Kent, NA, Mellor, J, Jamieson, DJ 2000Cadmium-inducible expression of the yeast GSH1 gene requires a functional sulfur-amino acid regulatory networkJ Biol Chem2753261132616PubMedCrossRefGoogle Scholar
  22. Drager, DB, Desbrosses-Fonrouge, A, Krach, C, Chardonnens, AN, Meyer, RC, Saumitou-lappade, P, Kramer, U 2004Two genes encoding Arabidopsis halleri MTP1 metal transport proteins co-segregate with zinc tolerance and account for high MTP1 transcript levelsPlant J39425439PubMedCrossRefGoogle Scholar
  23. Ebbs, S, Lau, I, Ahner, B, Kochian, L 2002Phytochelatin synthesis is not responsible for Cd tolerance in the Zn/Cd hyperaccumulator Thlaspi caerulescens (J. and C. Presl)Planta214635640PubMedCrossRefGoogle Scholar
  24. Edwards, R 2000Towards understanding the function of glutathione transferases in plantsBrunold, CRennenberg, HDe Kok, LJStulen, IDavidian, JC eds. Sulfur Nutrition and Sulfur Assimilation in Higher Plants: Molecular, Biochemical and Physiological AspectsBernPaul Haupt369371Google Scholar
  25. Emanuelsson, O, Nielsen, H, Brunak, S, von Heijne, G 2000Predicting subcellular localization of proteins based on their N-terminal amino acid sequenceJ Mol Biol30010051016PubMedCrossRefGoogle Scholar
  26. Ezaki, B, Katsuhara, M, Kawamura, M, Matsumoto, H 2001Different mechanisms of four aluminum (Al)-resistant transgenes for Al toxicity in ArabidopsisPlant Physiol127918927PubMedCrossRefGoogle Scholar
  27. Foyer, CH, Noctor, G 2005Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responsesPlant Cell1718661875PubMedCrossRefGoogle Scholar
  28. Freeman, JL, Persans, MW, Nieman, K, Albrecht, C, Peer, W, Pickering, IJ, Salt, DE 2004Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulatorsPlant Cell1621762191PubMedCrossRefGoogle Scholar
  29. Fujimori, K, Ohta, D 2003Heavy metal induction of Arabidopsis serine decarboxylase gene expressionBiosci Biotech Biochem67896898CrossRefGoogle Scholar
  30. Gakh, E, Cavadini, P, Isaya, G 2002Mitochondrial processing peptidasesBiochim Biophys Acta15926377PubMedGoogle Scholar
  31. Gallego, SM, Benavides, MP, Tomaro, ML 1996Effect of heavy metal ion excess on sunflower leaves: evidence for involvement of oxidative stressPlant Sci121151159CrossRefGoogle Scholar
  32. Grill, E, Loeffler, S, Winnacker, EL, Zenk, MH 1989Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase)Proc Natl Acad Sci USA8668386842PubMedGoogle Scholar
  33. Guimarães, B, Souchon, H, Honoré, N, Saint-Joanis, B, Brosch, R, Shepard, W, Cole, ST, Alzari, PM 2005Structure and mechanism of the alkyl hydroperoxidase AhpC, a key element of the Mycobacterium tuberculosis defense system against oxidative stressJ Biol Chem2802573525742PubMedGoogle Scholar
  34. Gupta, DK, Tohoyama, H, Joho, M, Inouhe, M 2004Changes in the levels of phytochelatins and related metal-binding peptides in chickpea seedlings exposed to arsenic and different heavy metal ionsJ Plant Res117253256PubMedCrossRefGoogle Scholar
  35. Gygi, SP, Rochon, Y, Franza, BR, Aebersold, R 1999Correlation between protein and mRNA abundance in yeastMol Cell Biol1917201730PubMedGoogle Scholar
  36. Hall, JL 2002Cellular mechanisms for heavy metal detoxification and toleranceJ Exp Bot53111PubMedCrossRefGoogle Scholar
  37. Harada, E, Choi, YE, Tsuchisaka, A, Obata, H, Sano, H 2001Transgenic tobacco plants expressing a rice cysteine synthase gene are tolerant to toxic levels of cadmiumJ Plant Physiol158655661Google Scholar
  38. Haramaki, N, Han, D, Handelman, GJ, Tritschler, HJ, Packer, L 1997Cytosolic and mitochondrial systems for NADH- and NADPH-dependent reduction of α-lipoic acidFree Radic Biol Med22535542PubMedCrossRefGoogle Scholar
  39. Hawkesford, MJ 2000Plant responses to sulphur deficiency and the genetic manipulation of sulphate transporters to improve S-utilization efficiencyJ Exp Bot51131138PubMedCrossRefGoogle Scholar
  40. Heckathorn, SA, Mueller, JK, LaGuidice, S, Zhu, B, Barrett, T, Blair, B, Dong, Y 2004Chloroplast small heat-shock proteins protect photosynthesis during heavy metal stressAm J Bot9113121318Google Scholar
  41. Hell, R, Jost, R, Berkowitz, O, Wirtz, M 2002Molecular and biochemical analysis of the enzymes of cysteine biosynthesis in the plant Arabidopsis thaliana Amino Acids22245257PubMedCrossRefGoogle Scholar
  42. Hirai, MY, Fujiwara, T, Awazuhara, M, Kimura, T, Noji, M, Saito, K 2003Global expression profiling of sulfur-starved Arabidopsis by DNA macroarray reveals the role of O-acetyl-L-serine as a general regulator of gene expression in response to sulfur nutritionPlant J33651663PubMedCrossRefGoogle Scholar
  43. Howarth, JR, Domínguez-Solís, JR, Gutiérrez-Alcalá, G, Wray, JL, Romero, LC, Gotor, C 2003The serine acetyltransferase gene family in Arabidopsis thaliana and the regulation of its expression by cadmiumPlant Mol Biol51589598PubMedCrossRefGoogle Scholar
  44. Ideker, T, Thorsson, V, Ranish, JA, Christmas, R, Buhler, J, Eng, JK, Bumgarner, R, Goodlett, DR, Aebersold, R, Hed, L 2001Integrated genomic and proteomic analyses of a systematically perturbed metabolic networkScience292929934PubMedCrossRefGoogle Scholar
  45. Ingle, RA, Mugford, ST, Rees, JD, Campbell, MM, Smith, JAC 2005Constitutively high expression of the histidine biosynthetic pathway contributes to nickel tolerance in hyperaccumulator plantsPlant Cell1720892106PubMedCrossRefGoogle Scholar
  46. Jaffré, T, Brooks, RR, Lee, J, Reeves, RD 1976 Sebertia acuminata: a hyperaccumulator of nickel from New CaledoniaScience193579580PubMedGoogle Scholar
  47. Joho, M, Inouhe, M, Tohoyama, H, Murayama, T 1995Nickel resistance mechanisms in yeasts and other fungiJ Ind Microbiol14164168PubMedCrossRefGoogle Scholar
  48. Kawashima, CG, Noji, M, Nakamura, M, Ogra, Y, Suzuki, KT, Saito, K 2004Heavy metal tolerance of transgenic tobacco plants over-expressing cysteine synthaseBiotechnol Lett26153157PubMedCrossRefGoogle Scholar
  49. Kerkeb, L, Krämer, U 2003The role of free histidine in xylem loading of nickel in Alyssum lesbiacum and Brassica juncea Plant Physiol131716724PubMedCrossRefGoogle Scholar
  50. Kim, D, Gustin, JL, Lahner, B, Persans, MW, Baek, D, Yun, DJ, Salt, DE 2004The plant CDF family member TgMTP1 from the Ni/Zn hyperaccumulator Thlaspi goesingense acts to enhance efflux of Zn at the plasma membrane when expressed in Saccharomyces cerevisiae Plant J39237251PubMedGoogle Scholar
  51. Knudsen, B, Miyamoto, MM, Laipis, PJ, Silverman, DN 2003Using evolutionary rates to investigate protein functional divergence and conservation: a case study of the carbonic anhydrasesGenetics16412611269PubMedGoogle Scholar
  52. Koprivova, A, Suter, M, Op den Camp, R, Brunold, C, Kopriva, S 2000Regulation of sulfate assimilation by nitrogen in ArabidopsisPlant Physiol122737746PubMedCrossRefGoogle Scholar
  53. Krämer, U, Cotter-Howells, JD, Charnock, JM, Baker, AJM, Smith, JAC 1996Free histidine as a metal chelator in plants that accumulate nickelNature379635638Google Scholar
  54. Kreżel, A, Szczepanik, W, Sokołowska, M, Jeżowska-Bojczuk, M, Bal, W 2003Correlations between complexation modes and redox activities of Ni(II)–GSH complexesChem Res Toxicol16855864PubMedGoogle Scholar
  55. Lasat, MM, Pence, NS, Garvin, DF, Ebbs, SD, Kochian, LV 2000Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspi caerulescens J Exp Bot517179PubMedCrossRefGoogle Scholar
  56. Lindermayr, C, Saalbach, G, Durner, J 2005Proteomic identification of S-nitrosylated proteins in ArabidopsisPlant Physiol137921930PubMedCrossRefGoogle Scholar
  57. Liochev, SI, Fridovich, I 2005The role of CO2 in cobalt-catalyzed peroxidationsArch Biochem Biophys43999104PubMedCrossRefGoogle Scholar
  58. Lombi, E, Tearall, KL, Howarth, JR, Zhao, FJ, Hawkesford, MJ, McGrath, SP 2002Influence of iron status on cadmium and zinc uptake by different ecotypes of the hyperaccumulator Thlaspi caerulescens Plant Physiol12813591367PubMedCrossRefGoogle Scholar
  59. Maitani, T, Kubota, H, Sato, K, Yamada, T 1996The composition of metals bound to class III metallothionein (phytochelatin and its desglycyl peptide) induced by various metals in root cultures of Rubia tinctorum Plant Physiol11011451150PubMedGoogle Scholar
  60. Mannervik, B, Danielson, UH 1988Glutathione transferases – structure and catalytic activityCrit Rev Biochem23283337Google Scholar
  61. Mano, J, Torii, Y, Hayashi, S, Takimoto, K, Matsui, K, Nakamura, K, Inze, D, Babiychuk, E, Kushnir, S, Asada, K 2002The NADPH:quinone oxidoreductase P1-ζ-crystallin in Arabidopsis catalyzes the α,β-hydrogenation of 2-alkenals: detoxication of the lipid peroxide-derived reactive aldehydesPlant Cell Physiol4314451455PubMedGoogle Scholar
  62. Matuda, S, Saheki, T 1982Intracellular distribution and biosynthesis of lipoamide dehydrogenase in rat liverJ Biochem91553561PubMedGoogle Scholar
  63. Millar, AH, Sweetlove, LJ, Giege, P, Leaver, CJ 2001Analysis of the Arabidopsis mitochondrial proteomePlant Physiol12717111727PubMedCrossRefGoogle Scholar
  64. Momose, Y, Iwahashi, H 2001Bioassay of cadmium using a DNA microarray: genome-wide expression patterns of Saccharomyces cerevisiae response to cadmiumEnviron Toxicol Chem2023532360PubMedCrossRefGoogle Scholar
  65. Neumann, D, Lichtenberger, O, Gunther, D, Tschiersch, K, Nover, L 1994Heat-shock proteins induce heavy-metal tolerance in higher-plantsPlanta194360367CrossRefGoogle Scholar
  66. Neumann, D, Zurnieden, U, Lichtenberger, O, Leopold, I 1995How does Armeria maritima tolerate high heavy-metal concentrations?J Plant Physiol146704717Google Scholar
  67. Noctor, G, Arisi, A, Jouanin, L, Kunert, K, Rennenberg, H, Foyer, C 1998Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plantsJ Exp Bot49623647Google Scholar
  68. Oven, M, Grill, E, Golan-Goldhirsh, A, Kutchan, TM, Zenk, MH 2002Increase of free cysteine and citric acid in plant cells exposed to cobalt ionsPhytochem60467474CrossRefGoogle Scholar
  69. Papoyan, A, Kochian, LV 2004Identification of Thlaspi carulescens genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPasePlant Physiol13638143823PubMedCrossRefGoogle Scholar
  70. Pence, NS, Larsen, PB, Ebbs, SD, Letham, DLD, Lasat, MM, Garvin, DF, Eide, D, Kochian, LV 2000The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens Proc Natl Acad Sci USA9749564960PubMedCrossRefGoogle Scholar
  71. Perham, RN 2000Swinging arms and swinging domains in multifunctional enzymes: catalytic machines for multistep reactionsAnnu Rev Biochem699611004PubMedCrossRefGoogle Scholar
  72. Persans, MW, Yan, X, Patnoe, JM, Krämer, U, Salt, DE 1999Molecular dissection of the role of histidine in nickel hyperaccumulation in Thlaspi goesingense (Hálácsy)Plant Physiol12111171126PubMedCrossRefGoogle Scholar
  73. Persans, MW, Salt, D 2000Possible molecular mechanisms involved in nickel, zinc and selenium hyperaccumulation in plantsBiotechnol Gen Eng Rev17389413Google Scholar
  74. Persans, MW, Nieman, K, Salt, DE 2001Functional activity and role of cation-efflux family members in Ni hyperaccumulation in Thlaspi goesingense Proc Natl Acad Sci USA98999510000PubMedCrossRefGoogle Scholar
  75. Pollard, AJ, Powell, KD, Harper, FA, Smith, JAC 2002The genetic basis of metal hyperaccumulation in plantsCrit Rev Plant Sci21539566Google Scholar
  76. Prabhu, V, Chatson, KB, Abrams, GD, King, J 1996 13C nuclear magnetic resonance detection of interactions of serine hydroxymethyltransferase with C1-tetrahydrofolate synthase and glycine decarboxylase complex activities in ArabidopsisPlant Physiol112207216PubMedCrossRefGoogle Scholar
  77. Randhawa, VK, Zhou, F, Jin, X, Nalewajko, C, Kushner, DJ 2001Role of oxidative stress and thiol antioxidant enzymes in nickel toxicity and resistance in strains of the green alga Scenedesmus acutus f. alternans Can J Microbiol47987993PubMedCrossRefGoogle Scholar
  78. Reeves, RD, Baker, AJM 2000Metal-accumulating plantsRaskin, IEnsley, BD eds. Phytoremediation of Toxic Metals: Using Plants to Clean Up the EnvironmentNew YorkJohn Wiley and Sons193229Google Scholar
  79. Richards, KD, Schott, EJ, Sharma, YK, Davis, KR, Gardner, RC 1998Aluminum induces oxidative stress genes in Arabidopsis thaliana Plant Physiol116409418PubMedCrossRefGoogle Scholar
  80. Roosens, , NH, , Bernard, C, Leplae, R, Verbruggen, N 2004Evidence for copper homeostasis function of metallothionein (MT3) in the hyperaccumulator Thlaspi caerulescens FEBS Lett577916PubMedCrossRefGoogle Scholar
  81. Saito, K 2004Sulfur assimilatory metabolism. The long and smelling roadPlant Physiol13624432450PubMedCrossRefGoogle Scholar
  82. Salt, DE, Prince, RC, Baker, AJM, Raskin, I, Pickering, IJ 1999Zinc ligands in the metal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopyEnviron Sci Technol33713717CrossRefGoogle Scholar
  83. Schäfer, HJ, Haag-Kerwer, A, Rausch, T 1998cDNA cloning and expression analysis of genes encoding GSH synthesis in roots of the heavy-metal accumulator Brassica juncea L.: evidence for Cd-induction of a putative mitochondrial γ-glutamylcysteine synthetase isoformPlant Mol Biol378797PubMedGoogle Scholar
  84. Schat, H, Llugany, M, Vooijs, R, Hartley-Whitaker, J, Bleeker, PM 2002The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and non-hyperaccumulator metallophytesJ Exp Bot5323812392PubMedCrossRefGoogle Scholar
  85. Schickler, H, Caspi, H 1999Response of antioxidative enzymes to nickel and cadmium stress in hyperaccumulator plants of the genus Alyssum Physiol Plant1053944CrossRefGoogle Scholar
  86. Schmöger, ME, Oven, M, Grill, E 2000Detoxification of arsenic by phytochelatins in plantsPlant Physiol122793801PubMedGoogle Scholar
  87. Schöneck, R, Billaut-Mulot, O, Numrich, P, Ouaissi, MA, Krauth-Siegel, RL 1997Cloning, sequencing and functional expression of dihydrolipoamide dehydrogenase from the human pathogen Trypanosoma cruzi Eur J Biochem243739747PubMedGoogle Scholar
  88. Shen, B, Jensen, RG, Bohnert, HJ 1997Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplastsPlant Physiol11311771183PubMedCrossRefGoogle Scholar
  89. Suzuki, N, Koizumi, N, Sano, H 2001Screening of cadmium-responsive genes in Arabidopsis thaliana Plant Cell Environ2411771188Google Scholar
  90. Sweetlove, LJ, Heazlewood, JL, Herald, V, Holtzapffel, R, Day, DA, Leaver, CJ, Millar, AH 2002The impact of oxidative stress on Arabidopsis mitochondriaPlant J32891904PubMedCrossRefGoogle Scholar
  91. Tseng, TS, Tzeng, SS, Yeh, KW, Yeh, CH, Chang, FC, Chen, YM, Lin, CY 1993The heat-shock response in rice seedlings – isolation and expression of cDNAs that encode class-I low-molecular-weight heat-shock proteinsPlant Cell Physiol34165168Google Scholar
  92. Turner, SR, Ireland, R, Morgan, C, Rawsthorne, S 1992Identification and localization of multiple forms of serine hydroxymethyltransferase in pea (Pisum sativum) and characterization of a cDNA encoding a mitochondrial isoformJ Biol Chem2671352813534PubMedGoogle Scholar
  93. Vacchina V, Mari S, Czernic F, Marques L, Pianelli K, Schaum Loffel D, Lebrun M, Lobinski R. 2003 Speciation of nickel in a hyper accumulating plant by high-performance liquid chromotography-inductively coupled plasma mass spectrometry and electrospray MS/MS assisted by cloning using yeast complementation. Anal. Chem. 75, 2740–2745Google Scholar
  94. Vatamaniuk, OK, Mari, S, Lu, YP, Rea, PA 2000Mechanism of heavy metal ion activation of phytochelatin (PC) synthaseJ Biol Chem2753145131459PubMedCrossRefGoogle Scholar
  95. Vido, K, Spector, D, Lagniel, G, Lopez, S, Toledano, MB, Labarre, J 2001A proteome analysis of the cadmium response in Saccharomyces cerevisiaeJ Biol Chem27684698474PubMedCrossRefGoogle Scholar
  96. Weber, H, Harada, E, Vess, C, Roepenack-Lahaye, E, Clemens, S 2004Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factorsPlant J37269281PubMedCrossRefGoogle Scholar
  97. Wilkins, MR, Gasteiger, E, Sanchez, JC, Bairoch, A, Hochstrasser, DF 1998Two-dimensional gel electrophoresis for proteome projects: the effects of protein hydrophobicity and copy numberElectrophoresis1915011505PubMedGoogle Scholar
  98. Wirtz, M, Droux, M, Hell, R 2004 O-acetylserine (thiol) lyase: an enigmatic enzyme of plant cysteine biosynthesis revisited in Arabidopsis thalianaJ Exp Bot5517851798PubMedCrossRefGoogle Scholar
  99. Wollgiehn, R, Neumann, D 1999Metal stress response and tolerance of cultured cells from Silene vulgaris and Lycopersicon peruvianum: role of heat stress proteinsJ Plant Physiol154547553Google Scholar
  100. Xia, L, Björnstedt, M, Nordman, T, Eriksson, LC, Olsson, JM 2001Reduction of ubiquinone by lipoamide dehydrogenase. An antioxidant regenerating pathwayEur J Biochem26814861490PubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Robert A. Ingle
    • 1
    • 2
    Email author
  • J. Andrew C. Smith
    • 1
  • Lee J. Sweetlove
    • 1
  1. 1.Department of Plant SciencesUniversity of OxfordOxfordUnited Kingdom
  2. 2.Department of Molecular and Cellular BiologyUniversity of Cape TownRepublic of South Africa

Personalised recommendations