, Volume 18, Issue 6, pp 577–585 | Cite as

Petrobactin is the Primary Siderophore Synthesized by Bacillus anthracis Str. Sterne under Conditions of Iron Starvation

  • Andrew T. Koppisch
  • Cindy C. Browder
  • Amanda L. Moe
  • Jacob T. Shelley
  • Blaine A. Kinkel
  • Larry E. Hersman
  • Srinivas Iyer
  • Christy E. RuggieroEmail author


The siderophores of Bacillus anthracis are critical for the pathogen’s proliferation and may be necessary for its virulence. Bacillus anthracis str. Sterne cells were cultured in iron free media and the siderophores produced were isolated and purified using a combination of XAD-2 resin, reverse-phase FPLC, and size exclusion chromatography. A combination of 1H and 13C NMR spectroscopy, UV spectroscopy and ESI-MS/MS fragmentation were used to identify the primary siderophore as petrobactin, a catecholate species containing unusual 3,4-dihydroxybenzoate moieties, previously only identified in extracts of Marinobacter hydrocarbonoclasticus. A secondary siderophore was observed and structural analysis of this species is consistent with that reported for bacillibactin, a siderophore observed in many species of bacilli. This is the first structural characterization of a siderophore from B. anthracis, as well as the first characterization of a 3,4-DHB containing catecholate in a pathogen.

Key words

bacillibactin Bacillus anthracis iron petrobactin siderophores 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barbeau, K, Zhang, G, Live, DH, Butler, A 2002Petrobactin, a photoreactive siderophore produced by the oil-degrading marine bacterium Marinobacter hydrocarbonoclasticusJ Am Chem Soc124378379PubMedCrossRefGoogle Scholar
  2. Bergeron, RJH, Huang, G, Smith, RE, Bharti, N, McManis, JS, Butler, A 2003Total synthesis and structure revision of petrobactinTetrahedron5920072014CrossRefGoogle Scholar
  3. Brackelsberg, CA, Nolan, LK, Brown, J 1997Characterization of Salmonella dublin and Salmonella typhimurium (Copenhagen) isolates from cattleVet Res Commun21409420PubMedCrossRefGoogle Scholar
  4. Byers, BR, Arceneaux, JE 1998Microbial iron transport: iron acquisition by pathogenic microorganismsSigel, ASigel, H eds. Metal Ions in Biological Systems: Iron Transport and Storage in Microorganisms, Plants, and Animals,New YorkMarcel Dekker, Inc.3766Google Scholar
  5. Cendrowski, S, MacArthur, W, Hanna, P. 2004Bacillus anthracis requires siderophore biosynthesis for growth in macrophages and mouse virulenceMol Microbiol51407417PubMedCrossRefGoogle Scholar
  6. Chao, KC, Hawkins, D, Williams, RP 1967Pigments produced by Bacillus anthracisFed Proc2615321533PubMedGoogle Scholar
  7. Czaky, TZ 1948On the estimation of bound hydroxylamine in biological materialsActa Chem Scand2450454Google Scholar
  8. Faraldo-Gomez, JD, Sansom, MS 2003Acquisition of siderophores in Gram-negative bacteriaNat Rev Mol Cell Biol410516PubMedGoogle Scholar
  9. Ferreras, JAR, Ryu, JS, Di Lello, F, Tan, DS, Quadri, LEN 2005Small molecule inhibition of siderophore biosynthesis in Mycobacterium tuberculosis and Yersinia pestisNat Chem Biol12932CrossRefGoogle Scholar
  10. Gardner, RA, Kinkade, R, Wang, C, Phanstiel, O 2004Total synthesis of petrobactin and its homologues as potential growth stimuli for Marinobacter hydrocarbonoclasticus, an oil-degrading bacteriaJ Org Chem6935303537PubMedCrossRefGoogle Scholar
  11. Garner, BL, Arceneaux, JE, Byers, BR 2004Temperature control of a 3,4-dihydroxybenzoate (protocatechuate)-based siderophore in Bacillus anthracisCurr Microbiol498994PubMedGoogle Scholar
  12. Gillam, AH, Lewis, AG, Andersen, RJ 1981Quantitative determination of hydroxamic acidsAnal Chem53841844Google Scholar
  13. Griffiths, E 1999Iron in biological systemsBullen, JJGriffiths, E eds. Iron and Infection: Molecular, Physiological and Clinical Aspects2Chichester UKJohn Wiley & Sons126Google Scholar
  14. Hemmerlin, A, Rivera, SB, Erickson, HK, Poulter, CD 2003Enzymes encoded by the farnesyl diphosphate synthase gene family in the Big Sagebrush Artemisia tridentata ssp. spiciformisJ Biol Chem2783213232140PubMedGoogle Scholar
  15. Hickford, SJ, Kupper, FC, Zhang, G, Carrano, CJ, Blunt, JW, Butler, A 2004Petrobactin sulfonate, a new siderophore produced by the marine bacterium Marinobacter hydrocarbonoclasticusJ Nat Prod6718971899PubMedCrossRefGoogle Scholar
  16. Jernigan, JA, Stephens, DS, Ashford, DA, Omenaca, C, Topiel, MS, Galbraith, M, Tapper, M, Fisk, TL, Zaki, S, Popovic, T, Meyer, RF, Quinn, CP, Harper, SA, Fridkin, SK, Sejvar, JJ, Shepard, CW, McConnell, M, Guarner, J, Shieh, WJ, Malecki, JM, Gerberding, JL, Hughes, JM, Perkins, BA 2001Bioterrorism-related inhalational anthrax: the first 10 cases reported in the United StatesEmerg Infect Dis7933944PubMedGoogle Scholar
  17. Matzanke, BF 1991Structures, Coordination chemistry and functions of microbial iron chelatesWinkelmann, G eds. Handbook of Microbial Iron ChelatesCRC PressBoca Raton, FL1564Google Scholar
  18. May, JJ, Wendrich, TM, Marahiel, MA 2001The dhb operon of Bacillus subtilis encodes the biosynthetic template for the catecholic siderophore 2,3-dihydroxybenzoate-glycine-threonine trimeric ester bacillibactinJ Biol Chem27672097217PubMedGoogle Scholar
  19. Neilands, J 1995Siderophores: structure and function of microbial iron transport compoundsJ Biol Chem2702672326726PubMedGoogle Scholar
  20. Neilands, JB, Nakamura, K 1991Detection, determination, isolation, characterization and regulation of microbial iron chelatesWinkelmann, G eds. Handbook of Microbial Iron ChelatesCRC PressBoca Raton, FL114Google Scholar
  21. Read, TD, Peterson, SN, Tourasse, N, Baillie, LW, Paulsen, IT, Nelson, KE, Tettelin, H, Fouts, DE, Eisen, JA, Gill, SR, Holtzapple, EK, Okstad, OA, Helgason, E, Rilstone, J, Wu, M, Kolonay, JF, Beanan, MJ, Dodson, RJ, Brinkac, LM, Gwinn, M, DeBoy, RT, Madpu, R, Daugherty, SC, Durkin, AS, Haft, DH, Nelson, WC, Peterson, JD, Pop, M, Khouri, HM, Radune, D, Benton, JL, Mahamoud, Y, Jiang, L, Hance, IR, Weidman, JF, Berry, KJ, Plaut, RD, Wolf, AM, Watkins, KL, Nierman, WC, Hazen, A, Cline, R, Redmond, C, Thwaite, JE, White, O, Salzberg, SL, Thomason, B, Friedlander, AM, Koehler, TM, Hanna, PC, Kolsto, AB, Fraser, CM 2003The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteriaNature4238186PubMedCrossRefGoogle Scholar
  22. Schwyn, B, Neilands, JB 1987Universal chemical assay for the detection and determination of siderophoresAnal Biochem1604756PubMedCrossRefGoogle Scholar
  23. Thomas, RA 2001Biosynthetic classification of fungal and streptomycete fused-ring aromatic polyketidesChembiochem261227PubMedCrossRefGoogle Scholar
  24. Webb, GF, Blaser, MJ 2002Mailborne transmission of anthrax: Modeling and implicationsProc Natl Acad Sci USA9970277032PubMedGoogle Scholar
  25. Wu, TS, Damu, AG, Su, CR, Kuo, PC 2004Terpenoids of Aristolochia and their biological activitiesNat Prod. Repts21594624Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Andrew T. Koppisch
    • 1
  • Cindy C. Browder
    • 2
  • Amanda L. Moe
    • 1
  • Jacob T. Shelley
    • 1
  • Blaine A. Kinkel
    • 1
  • Larry E. Hersman
    • 3
  • Srinivas Iyer
    • 1
  • Christy E. Ruggiero
    • 4
    Email author
  1. 1.Bioscience Division, B-4Los Alamos National LaboratoryLos AlamosUSA
  2. 2.Department of ChemistryFort Lewis CollegeDurangoUSA
  3. 3.Bioscience Division, B-2Los Alamos National LaboratoryLos AlamosUSA
  4. 4.Chemistry Division, C-SICLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations