, Volume 18, Issue 1, pp 83–88 | Cite as

Whole animal copper flux assessed by positron emission tomography in the Long – Evans cinnamon rat – a feasibility study

  • Karl-Dimiter Bissig
  • Michael Honer
  • Kurt Zimmermann
  • Karl H. Summer
  • Marc Solioz


Copper is an essential trace element. However, excess copper can lead to oxidation of biomolecules and cell damage and copper levels must be carefully controlled. While copper homeostasis has been studied extensively at the cellular level, short-term body copper fluxes are poorly understood. Here, we assessed for the first time the feasibility of measuring whole body copper flux by positron emission tomography, using 64Cu. A comparative approach comparing the Long – Evans cinnamon (LEC) rat to the wild type was chosen. LEC rats are an accepted model for Wilson disease, an inherited disorder of copper excretion in humans. In LEC rats as well as in Wilson patients, the copper transporting ATPase, ATP7B, is defective. This ATPase is primarily expressed in the liver and serves in copper secretion via the bile. Dysfunction of ATP7B leads to accumulation of copper in the liver. A control and an LEC rat were transgastrically injected with 10 μg of 64Cu and the copper flux followed for three hours by whole animal PET and concomitant collection of bile, as well as the analysis of tissue following tomography. As seen by PET, the administered copper was largely trapped in the stomach and the proximal intestine, and without a significant difference between control and LEC rat. Due to an insufficient dynamic range of the PET technology, copper which was systemically absorbed and primarily transported to the liver could only be followed by sampling and by β-counting. Biliary copper excretion ensued after 15 min in the control rat, but was absent in the LEC rat. Biliary excretion reached saturation one hour after copper administration. The trapping of orally administered copper in the gastrointestinal tract may be an important mechanism to prevent copper toxicity under conditions of a sudden, excessive copper load, which cannot be alleviated by increased biliary secretion. This trapping does however limit the utility of PET to measure whole animal copper flux.


copper homeostasis positron emission tomography Long Evans cinnamon rats Wilson disease secretion bile 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrews, NC 2002Metal transporters and diseaseCurr. Opin. Chem. Biol.6181186CrossRefPubMedGoogle Scholar
  2. Brewer, GJ 1995Practical recommendations and new therapies for Wilson's diseaseDrugs50240249PubMedGoogle Scholar
  3. Brewer, GJ, Dick, RD, Johnson, VD, Brunberg, JA, Kluin, KJ, Fink, JK 1998Treatment of Wilson's disease with zinc: XV long-term follow-up studiesJ. Lab Clin. Med.132264278CrossRefPubMedGoogle Scholar
  4. Bronner, F, Yost, JH 1985Saturable and nonsaturable copper and calcium transport in mouse duodenumAm. J. Physiol.249G108G112PubMedGoogle Scholar
  5. Ferenci, P, Caca, K, Loudianos, G, Mieli-Vergani, G, Tanner, S, Sternlieb, I, Schilsky, M, Cox, D, Berr, F 2003Diagnosis and phenotypic classification of Wilson diseaseLiver23139142Google Scholar
  6. Forbes, JR, Cox, DW 1998Functional characterization of missense mutations in ATP7B: Wilson disease mutation or normal variant? Am. J. Hum. Genet.6316631674CrossRefPubMedGoogle Scholar
  7. Harada, M, Sakisaka, S, Yoshitake, M, Shakadoh, S, Gondoh, K, Sata, M, Tanikawa, K 1993Biliary copper excretion in acutely and chronically copper-loaded ratsHepatology17111117CrossRefPubMedGoogle Scholar
  8. Luk, E, Jensen, LT, Culotta, VC 2003The many highways for intracellular trafficking of metalsJ. Biol. Inorg. Chem.8803809PubMedGoogle Scholar
  9. Lutsenko, S, Kaplan, JH 1995Organization of P-type ATPases: Significance of structural diversityBiochemistry341560715613CrossRefPubMedGoogle Scholar
  10. Lutsenko, S, Tsivkovskii, R, Walker, JM 2003Functional properties of the human copper-transporting ATPase ATP7B (the Wilson's disease protein) and regulation by metallochaperone Atox1Ann. N. Y. Acad. Sci.986204211PubMedCrossRefGoogle Scholar
  11. Marceau, N, Aspin, N, Sass-Kortsak, A 1970Absorption of copper 64 from gastrointestinal tract of the ratAm. J. Physiol.218377383PubMedGoogle Scholar
  12. Mercer, JF, Barnes, N, Stevenson, J, Strausak, D, Llanos, RM 2003Copper-induced trafficking of the Cu-ATPases: a key mechanism for copper homeostasisBiometals16175184CrossRefPubMedGoogle Scholar
  13. Muratsubaki, H, Satake, K, Yamamoto, Y, Enomoto, K 2002Detection of serum proteins by native polyacrylamide gel electrophoresis using Blue Sepharose CL-6B-containing stacking gelsAnal. Biochem.307337340CrossRefPubMedGoogle Scholar
  14. Petrukhin, K, Fischer, SG, Pirastu, M, Tanzi, RE, Chernov, I, Devoto, M, Brzustowicz, LM, Cayanis, E, Vitale, E, Russo, JJ 1993Mapping, cloning and genetic characterization of the region containing the Wilson disease geneNat Genet.5338343CrossRefPubMedGoogle Scholar
  15. Prohaska, JR, Gybina, AA 2004Intracellular copper transport in mammalsJ. Nutr.13410031006PubMedGoogle Scholar
  16. Reader, AJ, Erlandsson, K, Flower, MA, Ott, RJ 1998Fast accurate iterative reconstruction for low-statistics positron volume imagingPhys. Med. Biol.43835846PubMedGoogle Scholar
  17. Schagger, H, von Jagow, G 1991Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active formAnal. Biochem.199223231CrossRefPubMedGoogle Scholar
  18. Schwarzbach, R, Zimmermann, K, Bläuenstein, P, Smith, A, Schubiger, PA 1995Development of a simple and selective separation of 67Cu from irradiated zinc for use in antibody labelling: a comparison of methodsAppl. Radiat. Isot.46329336CrossRefPubMedGoogle Scholar
  19. Shah, AB, Chernov, I, Zhang, HT, Ross, BM, Das, K, Lutsenko, S, Parano, E, Pavone, L, Evgrafov, O, Ivanova-Smolenskaya, IA, Anneren, G, Westermark, K, Urrutia, FH, Penchaszadeh, GK, Sternlieb, I, Scheinberg, IH, Gilliam, TC, Petrukhin, K 1997Identification and analysis of mutations in the Wilson disease gene (ATP7B): population frequencies, genotype-phenotype correlation, and functional analysesAm. J. Hum. Genet.61317328PubMedGoogle Scholar
  20. Solioz, M, Vulpe, C 1996CPx-type ATPases: a class of P-type ATPases that pump heavy metalsTrends Biochem. Sci.21237241CrossRefPubMedGoogle Scholar
  21. Tanzi, RE, Petrukhin, K, Chernov, I, Pellequer, JL, Wasco, W, Ross, B, Romano, DM, Parano, E, Pavone, L, Brzustowicz, LM 1993The Wilson disease gene is a copper transporting ATPase with homology to the Menkes disease geneNature Genet.5344350CrossRefPubMedGoogle Scholar
  22. Terada, K, Sugiyama, T 1999The Long–Evans Cinnamon rat: an animal model for Wilson's diseasePediatr. Int.41414418CrossRefPubMedGoogle Scholar
  23. Thiele, DJ 2003Integrating trace element metabolism from the cell to the whole organismJ. Nutr.1331579S1580SPubMedGoogle Scholar
  24. van CampenDR, MitchellAE. 1965 Absorption of Cu-64, Zn-65, Mo-99, and Fe-59 from ligated segments of the rat gastrintestinal tract. J. Nutr. 120–124.Google Scholar
  25. Wu, J, Forbes, JR, Chen, HS, Cox, DW 1994The LEC rat has a deletion in the copper transporting ATPase gene homologous to the Wilson disease geneNature Genet.7541545PubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Karl-Dimiter Bissig
    • 1
  • Michael Honer
    • 2
  • Kurt Zimmermann
    • 2
  • Karl H. Summer
    • 3
  • Marc Solioz
    • 1
    • 4
  1. 1.Department of Clinical PharmacologyUniversity of BerneBerneSwitzerland
  2. 2.Center for Radiopharmaceutical SciencePaul Scherrer InstituteVilligenSwitzerland
  3. 3.Institute of ToxicologyGSF-National Research Center for Environment and HealthNeuherbergGermany
  4. 4.Department of Clinical PharmacologyUniversity of BerneBerneSwitzerland

Personalised recommendations