Skip to main content

Advertisement

Log in

Natural groundwater nutrient fluxes exceed anthropogenic inputs in an ecologically impacted estuary: lessons learned from Mobile Bay, Alabama

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

In this study we evaluated the magnitude and seasonal variations of natural and anthropogenic fluxes of inorganic (NO3, NH4+, and PO43−) and organic (DON and dissolved organic carbon) nutrients delivered by submarine groundwater discharge (SGD) and rivers to the fourth largest estuary in the USA, Mobile Bay in Alabama. To identify the sources of SGD-nutrient in the estuary and their subsurface biogeochemical transformation, we applied a multi-method approach that combines geochemical nutrient (N and P) mass-balances, stable isotopes (nitrate \(\updelta^{15} {\text{N}}_{{{\text{NO}}_{3} }}\) and \(\updelta^{18} {\text{O}}_{{{\text{NO}}_{3} }}\) and sediment organic matter δ13Corg and δ15Norg) signatures, microbial sequencing analyses, dissolved organic matter source-composition, and shallow estuarine sediment lithological analyses. We found that during dry seasons SGD delivered nearly a quarter of the total nutrient inputs to Mobile Bay. These SGD fluxes were anoxic and N was delivered to the bay almost entirely as NH4+ and DON, which represented more than half of the total NH4+ and almost one fifth of the total DON inputs to the bay. We further observed that these significant SGD-derived N fluxes occurred exclusively to the east shore of Mobile Bay, historically impacted by hypoxia and large-scale fish kills known as “Jubilees”. We demonstrate here that although the Mobile Bay coastal area is largely developed and anthropogenic influences are well documented, a shallow peat layer identified only on the east shore serves as the main source of the exceptionally high NH4+ and DON fluxes. We found that the high groundwater NO3 concentrations observed further inland from over-fertilization also identified by previous studies, decreased dramatically as groundwater percolated through the intertidal zone of the coastal aquifer. The microbial community identified in the coastal sediments suggests that denitrification and dissimilatory nitrate reduction to ammonium (DNRA) were the main processes responsible for this extensive removal and transformation of anthropogenic N, respectively. Furthermore, we found no significant anthropogenic inputs from manure or sewage waste to the bay. These findings show that natural sources of nutrients can outcompete anthropogenic inputs despite extensive development of the coastal area. We hypothesize that similar subsurface biogeochemical nutrient transformations can occur in other shallow estuaries of the northern Gulf of Mexico and worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adyasari D, Hassenrück C, Oehler T, Sabdaningsih A, Moosdorf N (2019) Microbial community structure associated with submarine groundwater discharge in northern Java (Indonesia). Sci Total Environ 689:590–601

    Article  Google Scholar 

  • Albuquerque L, França L, Rainey FA, Schumann P, Nobre MF, da Costa MS (2011) Gaiella occulta gen. nov., sp. nov., a novel representative of a deep branching phylogenetic lineage within the class Actinobacteria and proposal of Gaiellaceae fam. nov. and Gaiellales ord. nov. Syst Appl Microbiol 34:595–599

    Article  Google Scholar 

  • Amberger A, Schmidt HL (1987) Natürliche isotopengehalte von Nitrat als Indikatoren für dessen Herkunft. Geochim Cosmochim Acta 51:2699–2705

    Article  Google Scholar 

  • An S, Gardner WS (2002) Dissimilatory nitrate reduction to ammonium (DNRA) as a nitrogen link, versus denitrification as a sink in a shallow estuary (Laguna Madre/Baffin Bay, Texas). Mar Ecol Prog Ser 237:41–50

    Article  Google Scholar 

  • Beebe DA, Lowery BA (2018) Seawater recirculation drives groundwater nutrient loading from a developed estuary shoreline with on-site wastewater treatment systems: Mobile Bay, USA. Environ Earth Sci 77:372

    Article  Google Scholar 

  • Bernard RJ, Mortazavi B, Kleinhuizen AA (2015) Dissimilatory nitrate reduction to ammonium (DNRA) seasonally dominates NO3 reduction pathways in an anthropogenically impacted sub-tropical coastal lagoon. Biogeochemistry 125:47–64

    Article  Google Scholar 

  • Biderre-Petit C, Dugat-Bony E, Mege M, Parisot N, Adrian L, Moné A, Denonfoux J, Peyretaillade E, Debroas D, Boucher D, Peyret P (2016) Distribution of Dehalococcoidia in the anaerobic deep water of a remote meromictic crater lake and detection of Dehalococcoidia-derived reductive dehalogenase homologous genes. PLoS ONE 11:e0145558

    Article  Google Scholar 

  • Brooks B, Murray R (1981) Nomenclature for “Micrococcus radiodurans” and other radiation-resistant cocci: Deinococcaceae fam. nov. and Deinococcus gen. nov., including five species. Int J Syst Evol Microbiol 31:353–360

    Google Scholar 

  • Burnett WC, Santos IR, Weinstein Y, Swarzenski PW, Herut B (2007) Remaining uncertainties in the use of Rn-222 as a quantitative tracer of submarine groundwater discharge. In: Sanford W, Langevin C, Polemio M, Povinec P (eds) A new focus on groundwater–seawater interactions. IAHS Publication 312, pp 109–118

  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581

    Article  Google Scholar 

  • Cerdà-Domènech M, Rodellas V, Folch A, Garcia-Orellana J (2017) Constraining the temporal variations of Ra isotopes and Rn in the groundwater end-member: implications for derived SGD estimates. Sci Total Environ 595:849–857

    Article  Google Scholar 

  • Chandler RV, Moorea JD, Gillett B (1985) Ground-water chemistry and salt-water encroachment, southern Baldwin County, Alabama. Geological Survey of Alabama Bulletin 126

  • Charette MA, Buesseler KO, Andrews JE (2001) Utility of radium isotopes for evaluating the input and transport of groundwater-derived nitrogen to a Cape Cod Estuary. Limnol Oceanogr 46:465–470

    Article  Google Scholar 

  • Charette MA, Splivallo R, Herbold C, Bollinger MS, Moore WS (2003) Salt marsh submarine groundwater discharge as traced by radium isotopes. Mar Chem 84:113–121

    Article  Google Scholar 

  • Cory RM, McKnight DM (2005) Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Environ Sci Technol 39:8142–8149

    Article  Google Scholar 

  • Craig H (1957) Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochim Cosmochim Acta 12:133–149

    Article  Google Scholar 

  • D’Avanzo C, Kremer JN (1994) Diel oxygen dynamics and anoxic events in an eutrophic estuary of Waquoit Bay, Massachusetts. Estuaries 17:131–139

    Article  Google Scholar 

  • Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 32:926–929

    Article  Google Scholar 

  • Diepenbroek M, Glöckner FO, Grobe P, Güntsch A, Huber R, König-Ries B, Kostadinov I, Nieschulze J, Seeger B, Tolksdorf R, Triebel D. (2014) Towards an integrated biodiversity and ecological research data management and archiving platform: the German Federation for the Curation of Biological Data (GFBio). In: Informatik 2014

  • Ding L, Yokota A (2004) Proposals of Curvibacter gracilis gen. nov., sp. nov. and Herbaspirillum putei sp. nov. for bacterial strains isolated from well water and reclassification of [Pseudomonas] huttiensis, [Pseudomonas] lanceolata, [Aquaspirillum] delicatum and [Aquaspirillum] autotrophicum as Herbaspirillum huttiense comb. nov., Curvibacter lanceolatus comb. nov., Curvibacter delicatus comb. nov. and Herbaspirillum autotrophicum comb. nov. Int J Syst Evol Microbiol 54:2223–2230

    Article  Google Scholar 

  • Dinnel SP, Schroeder WW, Wiseman WJ Jr (1990) Estuarine-shelf exchange using Landsat images of discharge plumes. J Coast Res 6:789–799

    Google Scholar 

  • Domangue RJ, Mortazavi B (2018) Nitrate reduction pathways in the presence of excess nitrogen in a shallow eutrophic estuary. Environ Pollut 238:599–606

    Article  Google Scholar 

  • Dowling CB, Poreda RJ, Hunt AG, Carey AE (2004) Ground water discharge and nitrate flux to the Gulf of Mexico. Groundwater 42:401–417

    Article  Google Scholar 

  • Du J, Park K, Shen J, Dzwonkowski B, Yu X, Yoon BI (2018) Role of baroclinic processes on flushing characteristics in a highly stratified estuarine system, Mobile Bay. Alabama. J Geophys Res Oceans. https://doi.org/10.1029/2018JC013855

    Article  Google Scholar 

  • Dulaiova H, Burnett W, Wattayakorn G, Sojisuporn P (2006) Are groundwater inputs into river-dominated areas important? The Chao Phraya River—Gulf of Thailand. Limnol Oceanogr 51:2232–2247

    Article  Google Scholar 

  • Dyer KR (1973) Estuaries: a physical introduction. Wiley, London

    Google Scholar 

  • Dzwonkowski B, Fournier S, Reager JT, Milroy S, Park K, Shiller AM, Greer AT, Soto I, Dykstra SL, Sanial V (2018) Tracking sea surface salinity and dissolved oxygen on a river-influenced, seasonally stratified shelf, Mississippi Bight, northern Gulf of Mexico. Cont Shelf Res 169:25–33

    Article  Google Scholar 

  • Ellis J (2013) Evaluation of submarine groundwater discharge and groundwater quality using a novel coupled approach: isotopic tracer techniques and numerical modeling. Master’s Thesis, University of Alabama

  • Ellis JT, Spruce JP, Swann RA, Smoot JC, Hilbert KW (2011) An assessment of coastal land-use and land-cover change from 1974–2008 in the vicinity of Mobile Bay, Alabama. J Coast Conserv 15:139–149

    Article  Google Scholar 

  • Fellman JB, Spencer RGM, Hernes PJ, Edwards RT, D’Amore DV, Hood E (2010) The impact of glacier runoff on the biodegradability and biochemical composition of terrigenous dissolved organic matter in near-shore marine ecosystems. Mar Chem 121:112–122

    Article  Google Scholar 

  • Garcés E, Basterretxea G, Tovar-Sánchez A (2011) Changes in microbial communities in response to submarine groundwater input. Mar Ecol Prog Ser 438:47–58

    Article  Google Scholar 

  • Gardner WS, McCarthy MJ, An S, Sobolev D, Sell KS, Brock D (2006) Nitrogen fixation and dissimilatory nitrate reduction to ammonium (DNRA) support nitrogen dynamics in Texas estuaries. Limnol Oceanogr 51:558–568

    Article  Google Scholar 

  • Geological Survey of Alabama (2018) Assessment of groundwater resources in Alabama, 2010–16. Geological Survey of Alabama Bulletin 186

  • Gillett B, Raymond D, Moore J, Tew B (2000) Hydrogeology and vulnerability to contamination of major aquifers in Alabama: Area 13. Geological Survey of Alabama Circular 199A

  • Granger J, Sigman DM, Lehmann MF, Tortell PD (2008) Nitrogen and oxygen isotope fractionation during dissimilatory nitrate reduction by denitrifying bacteria. Limnol Oceanogr 53:2533–2545

    Article  Google Scholar 

  • Greene DL, Rodriguez AB, Anderson JB (2007) Seaward-branching coastal-plain and piedmont incised-valley systems through multiple sea-level cycles: Late Quaternary examples from Mobile Bay and Mississippi Sound, USA. J Sediment Res 77:139–158

    Article  Google Scholar 

  • Gruber N (2004) The dynamics of the marine nitrogen cycle and its influence on atmospheric CO2 variations. In: Oguz T, Follows M (eds) Carbon climate interactions. Springer, Dordrecht, pp 97–148

    Google Scholar 

  • Guerra R, Righi S, Garcia-Luque E (2015) Modern accumulation rates and sources of organic carbon in the NE Gulf of Cadiz (SW Iberian Peninsula). J Radioanal Nucl Chem 305:429–437

    Article  Google Scholar 

  • Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471

    Google Scholar 

  • Harms NC, Lahajnar N, Gaye B, Rixen T, Dähnke K, Ankele M, Schwarz-Schampera U, Emeis KC (2019) Nutrient distribution and nitrogen and oxygen isotopic composition of nitrate in water masses of the subtropical southern Indian Ocean. Biogeosciences 16:2715–2732

    Article  Google Scholar 

  • Hattori S (2008) Syntrophic acetate-oxidizing microbes in methanogenic environments. Microbes Environ 23:118–127

    Article  Google Scholar 

  • Hernes PJ, Bergamaschi BA, Eckard RS, Spencer RG (2009) Fluorescence-based proxies for lignin in freshwater dissolved organic matter. J Geophys Res Biogeosci. https://doi.org/10.1029/2009JG000938

    Article  Google Scholar 

  • Holmes AJ, Costello A, Lidstrom M, Murrell JC (1995) Evidence that participate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol Lett 132:203–208

    Article  Google Scholar 

  • Howarth R, Chan F, Conley DJ, Garnier J, Doney SC, Marino R, Billen G (2011) Coupled biogeochemical cycles: eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems. Front Ecol Environ 9:18–26

    Article  Google Scholar 

  • Hummel RL (1996) Holocene Geologic History of the West Alabama Inner Continental Shelf, Alabama. Geological Survey of Alabama Bulletin 189

  • Hwang DW, Kim G, Lee YW, Yang HS (2005) Estimating submarine inputs of groundwater and nutrients to a coastal bay using radium isotopes. Mar Chem 96:61–71

    Article  Google Scholar 

  • Jarvis BDW, Van Berkum P, Chen WX, Nour SM, Fernandez MP, Cleyet-Marel JC, Gillis M (1997) Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov. Int J Syst Evol Microbiol 47:895–898

    Google Scholar 

  • Johannes RE (1980) The ecological significance of the submarine discharge of groundwater. Mar Ecol Prog Ser 3:365–373

    Article  Google Scholar 

  • Kelly RP, Moran SB (2002) Seasonal changes in groundwater input to a well-mixed estuary estimated using radium isotopes and implications for coastal nutrient budgets. Limnol Oceanogr 47:1796–1807

    Article  Google Scholar 

  • Kendall C (1998) Tracing nitrogen sources and cycling in catchments. In: Kendall C, McDonnell JJ (eds) Isotope tracers in catchment hydrology. Elsevier, Amsterdam, pp 519–576

    Chapter  Google Scholar 

  • Kendall C, Elliott EM, Wankel SD (2007) Tracing anthropogenic inputs of nitrogen to ecosystems. In: Stable isotopes in ecology and environmental science, pp 375–449. https://doi.org/10.1002/9780470691854.ch12

  • Kim G, Swarzenski PW (2010) Submarine groundwater discharge (SGD) and associated nutrient fluxes to the coastal ocean. In: Liu K, Atkinson L, Quiñones R, Talaue-McManus L (eds) Carbon and nutrient fluxes in continental margins. Springer, Berlin, pp 529–538

    Chapter  Google Scholar 

  • Knee KL, Paytan A (2011) Submarine groundwater discharge: a source of nutrients, metals, and pollutants to the coastal ocean. In: Wolanski E, McLusky DS (eds) Treatise on estuarine and coastal science. Academic, Waltham, pp 205–233

    Chapter  Google Scholar 

  • Krantz DE, Manheim FT, Bratton JF, Phelan DJ (2004) Hydrogeologic setting and ground water flow beneath a section of Indian River Bay, Delaware. Groundwater 42:1035–1051

    Article  Google Scholar 

  • Krest JM, Moore WS, Gardner LR, Morris JT (2000) Marsh nutrient export supplied by groundwater discharge: evidence from radium measurements. Glob Biogeochem Cycles 14:167–176

    Article  Google Scholar 

  • Kroeger KD, Swarzenski PW, Greenwood WJ, Reich C (2007) Submarine groundwater discharge to Tampa Bay: nutrient fluxes and biogeochemistry of the coastal aquifer. Mar Chem 104:85–97

    Article  Google Scholar 

  • Kuever J (2014a) The Family Syntrophaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes. Springer, Berlin, pp 281–288

    Chapter  Google Scholar 

  • Kuever J (2014b) The Family Syntrophobacteraceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes. Springer, Berlin, pp 289–299

    Chapter  Google Scholar 

  • Lamb AL, Wilson GP, Leng MJ (2006) A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material. Earth Sci Rev 75:29–57

    Article  Google Scholar 

  • Lambert WJ, Aharon P, Rodriguez AB (2008) Catastrophic hurricane history revealed by organic geochemical proxies in coastal lake sediments: a case study of Lake Shelby, Alabama (USA). J Paleolimnol 39:117–131

    Article  Google Scholar 

  • Lee YW, Hwang DW, Kim G, Lee WC, Oh HT (2009) Nutrient inputs from submarine groundwater discharge (SGD) in Masan Bay, an embayment surrounded by heavily industrialized cities, Korea. Sci Total Environ 407:3181–3188

    Article  Google Scholar 

  • Liefer JD, MacIntyre HL, Novoveska L, Smith WL, Dorsey CP (2009) Temporal and spatial variability in Pseudo-nitzschia spp. in Alabama coastal waters: a hot spot linked to submarine groundwater discharge? Harmful Algae 8:706–714

    Article  Google Scholar 

  • Liefer JD, MacIntyre HL, Su N, Burnett WC (2014) Seasonal alternation between groundwater discharge and benthic coupling as nutrient sources in a shallow coastal lagoon. Estuaries Coasts 37:925–940

    Article  Google Scholar 

  • Liu X, Li M, Castelle CJ, Probst AJ, Zhou Z, Pan J, Liu Y, Banfield JF, Gu JD (2018) Insights into the ecology, evolution, and metabolism of the widespread Woesearchaeotal lineages. Microbiome 6:102

    Article  Google Scholar 

  • Loesch H (1960) Sporadic mass shoreward migrations of demersal fish and crustaceans in Mobile Bay, Alabama. Ecology 41:292–298

    Article  Google Scholar 

  • Lovley DR, Giovannoni SJ, White DC, Champine JE, Phillips EJP, Gorby YA, Goodwin S (1993) Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol 159:336–344

    Article  Google Scholar 

  • Lu YH, Edmonds JW, Yamashita Y, Zhou B, Jaegge A, Baxley M (2015) Spatial variation in the origin and reactivity of dissolved organic matter in Oregon–Washington coastal waters. Ocean Dyn 65:17–32

    Article  Google Scholar 

  • Macintyre HL, Stutes AL, Smith WL, Dorsey CP, Abraham A, Dickey RW (2011) Environmental correlates of community composition and toxicity during a bloom of Pseudo-nitzschia spp. in the northern Gulf of Mexico. J Plankton Res 33:273–295

    Article  Google Scholar 

  • Makings U, Santos IR, Maher DT, Golsby-Smith L, Eyre BD (2014) Importance of budgets for estimating the input of groundwater-derived nutrients to an eutrophic tidal river and estuary. Estuar Coast Shelf Sci 143:65–76

    Article  Google Scholar 

  • Mariotti A (1983) Atmospheric nitrogen is a reliable standard for natural 15N abundance measurements. Nature 303:685

    Article  Google Scholar 

  • Maus I, Rumming M, Bergmann I, Heeg K, Pohl M, Nettmann E, Jaenicke S, Blom J, Pühler A, Schlüter A, Sczyrba A (2018) Characterization of Bathyarchaeota genomes assembled from metagenomes of biofilms residing in mesophilic and thermophilic biogas reactors. Biotechnol Biofuels 11:167

    Article  Google Scholar 

  • May EB (1973) Extensive oxygen depletion in Mobile Bay, Alabama. Limnol Oceanogr 18:353–366

    Article  Google Scholar 

  • McCoy C, Viso R, Peterson RN, Libes S, Lewis B, Ledoux J, Voulgaris G, Smith E, Sanger D (2011) Radon as an indicator of limited cross-shelf mixing of submarine groundwater discharge along an open ocean beach in the South Atlantic Bight during observed hypoxia. Cont Shelf Res 31:1306–1317

    Article  Google Scholar 

  • Meyers PA (1997) Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Org Geochem 27:213–250

    Article  Google Scholar 

  • Michael HA, Scott KC, Koneshloo M, Yu X, Khan MR, Li K (2016) Geologic influence on groundwater salinity drives large seawater circulation through the continental shelf. Geophys Res Lett. https://doi.org/10.1002/2016GL070863

    Article  Google Scholar 

  • Mitchell GJ, Jones JG, Cole JA (1986) Distribution and regulation of nitrate and nitrite reduction by Desulfovibrio and Desulfotomaculum species. Arch Microbiol 144:35–40

    Article  Google Scholar 

  • Mohamed NM, Saito K, Tal Y, Hill RT (2010) Diversity of aerobic and anaerobic ammonia-oxidizing bacteria in marine sponges. ISME J 4:38

    Article  Google Scholar 

  • Montiel D, Lamore A, Stewart J, Dimova N (2018) Is submarine groundwater discharge (SGD) important for the historical fish kills and harmful algal bloom events of Mobile Bay? Estuaries Coasts 42:470–493

    Article  Google Scholar 

  • Moore WS (1999) The subterranean estuary: a reaction zone of ground water and sea water. Mar Chem 65:111–125

    Article  Google Scholar 

  • Moore WS, Blanton JO, Joye SB (2006) Estimates of flushing times, submarine groundwater discharge, and nutrient fluxes to Okatee Estuary, South Carolina. J Geophys Res Oceans. https://doi.org/10.1029/2005JC003041

    Article  Google Scholar 

  • Moura I, Bursakov S, Costa C, Moura JJ (1997) Nitrate and nitrite utilization in sulfate-reducing bacteria. Anaerobe 3:279–290

    Article  Google Scholar 

  • Murgulet D, Tick GR (2009) Assessing the extent and sources of nitrate contamination in the aquifer system of southern Baldwin County, Alabama. Environ Geol 58:1051–1065

    Article  Google Scholar 

  • Murgulet D, Tick GR (2013) Understanding the sources and fate of nitrate in a highly developed aquifer system. J Contam Hydrol 155:69–81

    Article  Google Scholar 

  • Nercessian O, Noyes E, Kalyuzhnaya MG, Lidstrom ME, Chistoserdova L (2005) Bacterial populations active in metabolism of C1 compounds in the sediment of Lake Washington, a freshwater lake. Appl Environ Microbiol 71:6885–6899

    Article  Google Scholar 

  • Null KA, Corbett DR, DeMaster DJ, Burkholder JM, Thomas CJ, Reed RE (2011) Porewater advection of ammonium into the Neuse River Estuary, North Carolina, USA. Estuar Coast Shelf Sci 95:314–325

    Article  Google Scholar 

  • Null KA, Dimova NT, Knee KL, Esser BK, Swarzenski PW, Singleton MJ, Stacey M, Paytan A (2012) Submarine groundwater discharge-derived nutrient loads to San Francisco Bay: implications to future ecosystem changes. Estuaries Coasts 35:1299–1315

    Article  Google Scholar 

  • Nyerges G, Han SK, Stein LY (2010) Effects of ammonium and nitrite on growth and competitive fitness of cultivated methanotrophic bacteria. Appl Environ Microbiol 76:5648–5651

    Article  Google Scholar 

  • Paerl HW (1997) Coastal eutrophication and harmful algal blooms: importance of atmospheric deposition and groundwater as “new” nitrogen and other nutrient sources. Limnol Oceanogr 42:1154–1165

    Article  Google Scholar 

  • Paerl HW, Pinckney JL, Fear JM, Peierls BL (1998) Ecosystem responses to internal and watershed organic matter loading: consequences for hypoxia in the eutrophying Neuse River Estuary, North Carolina, USA. Mar Ecol Prog Ser 166:17–25

    Article  Google Scholar 

  • Park K, Kim CK, Schroeder WW (2007) Temporal variability in summertime bottom hypoxia in shallow areas of Mobile Bay, Alabama. Estuaries Coasts 30:54–65

    Article  Google Scholar 

  • Peterson RN, Moore WS, Chappel SL, Viso RF, Libes SM, Peterson LE (2016) A new perspective on coastal hypoxia: the role of saline groundwater. Mar Chem 179:1–11

    Article  Google Scholar 

  • Prauser H (1976) Nocardioides, a new genus of the order Actinomycetales. Int J Syst Evol Microbiol 26:58–65

    Google Scholar 

  • Rabalais NN, Turner RE, Wiseman WJ Jr (2002) Gulf of Mexico hypoxia, aka “The dead zone”. Annu Rev Ecol Syst 33:235–263

    Article  Google Scholar 

  • Redfield AC (1934) On the proportions of organic derivatives in sea water and their relation to the composition of plankton. James Johnstone Memorial volume, pp 176–192

  • Reed PC (1971) Geologic map of Baldwin County, Alabama. Geological Survey of Alabama Special Map 94

  • Robertson WD (1995) Development of steady-state phosphate concentrations in septic system plumes. J Contam Hydrol 19:289–305

    Article  Google Scholar 

  • Rodellas V, García-Orellana J, Tovar-Sánchez A, Basterretxea G, López-García JM, Sánchez-Quiles D, García-Solsona E, Masqué P (2014) Submarine groundwater discharge as a source of nutrients and trace metals in a Mediterranean Bay (Palma Beach, Balearic Islands). Mar Chem 160:56–66

    Article  Google Scholar 

  • Rodriguez AB, Greene DL, Anderson JB, Simms AR (2008) Response of Mobile Bay and eastern Mississippi Sound, Alabama, to changes in sediment accommodation and accumulation. In: Anderson JB, Rodriguez AB (eds) Response of Upper Gulf Coast estuaries to Holocene climate change and sea-level rise. Geological Society of America, pp 13–29

  • Ryabenko E (2013) Stable isotope methods for the study of the nitrogen cycle. In: Zambianchi E (ed) Topics in oceanography. InTech, Rijeka, pp 1–40

    Google Scholar 

  • Rysgaard S, Risgaard-Petersen N, Sloth NP (1996) Nitrification, denitrification, and nitrate ammonification in sediments of two coastal lagoons in southern France. In: Caumette P, Castel J, Herbert R (eds) Coastal lagoon eutrophication and anaerobic processes. Springer, Dordrecht, pp 133–141

    Chapter  Google Scholar 

  • Sadat-Noori M, Santos IR, Tait DR, Maher DT (2016) Fresh meteoric versus recirculated saline groundwater nutrient inputs into a subtropical estuary. Sci Total Environ 566:1440–1453

    Article  Google Scholar 

  • Sangwan P, Chen X, Hugenholtz P, Janssen PH (2004) Chthoniobacter flavus gen. nov., sp. nov., the first pure-culture representative of subdivision two, Spartobacteria classis nov., of the phylum Verrucomicrobia. Appl Environ Microbiol 70:5875–5881

    Article  Google Scholar 

  • Santos P, Pinhal I, Rainey FA, Empadinhas N, Costa J, Fields B, Benson R, Veríssimo A, da Costa MS (2003) Gamma-Proteobacteria Aquicella lusitana gen. nov., sp. nov., and Aquicella siphonis sp. nov. infect protozoa and require activated charcoal for growth in laboratory media. Appl Environ Microbiol 69:6533–6540

    Article  Google Scholar 

  • Santos IRS, Burnett WC, Chanton J, Mwashote B, Suryaputra IG, Dittmar T (2008) Nutrient biogeochemistry in a Gulf of Mexico subterranean estuary and groundwater-derived fluxes to the coastal ocean. Limnol Oceanogr 53:705–718

    Article  Google Scholar 

  • Santos IR, Burnett WC, Chanton J, Dimova N, Peterson RN (2009) Land or ocean? Assessing the driving forces of submarine groundwater discharge at a coastal site in the Gulf of Mexico. J Geophys Res Oceans 114:1–11

    Article  Google Scholar 

  • Schnurrenberger D, Russell J, Kelts K (2003) Classification of lacustrine sediments based on sedimentary components. J Paleolimnol 29:141–154

    Article  Google Scholar 

  • Schroeder WW, Wiseman WJ (1986) Low-frequency shelf-estuarine exchange processes in Mobile Bay and other estuarine systems on the northern Gulf of Mexico. In: Wolfe A (ed) Estuarine variability. Elsevier, Amsterdam, pp 355–367

    Chapter  Google Scholar 

  • Schroeder WW, Dinnel SP, Wiseman WJ (1990) Salinity stratification in a river-dominated estuary. Estuaries 13:145–154

    Article  Google Scholar 

  • Sebilo M, Billen G, Grably M, Mariotti A (2003) Isotopic composition of nitrate-nitrogen as a marker of riparian and benthic denitrification at the scale of the whole Seine River System. Biogeochemistry 63:35–51

    Article  Google Scholar 

  • Seitz HJ, Cypionka H (1986) Chemolithotrophic growth of Desulfovibrio desulfuricans with hydrogen coupled to ammonification of nitrate or nitrite. Arch Microbiol 146:63–67

    Article  Google Scholar 

  • Seitzinger SP, Kroeze C, Bouwman AF, Caraco N, Dentener F, Styles RV (2002) Global patterns of dissolved inorganic and particulate nitrogen inputs to coastal systems: recent conditions and future projections. Estuaries 25:640–655

    Article  Google Scholar 

  • Sekiguchi Y, Muramatsu M, Imachi H, Narihiro T, Ohashi A, Harada H, Hanada S, Kamagata Y (2008) Thermodesulfovibrio aggregans sp. nov. and Thermodesulfovibrio thiophilus sp. nov., anaerobic, thermophilic, sulfate-reducing bacteria isolated from thermophilic methanogenic sludge, and emended description of the genus Thermodesulfovibrio. Int J Syst Evol Microbiol 58:2541–2548

    Article  Google Scholar 

  • Shang P, Lu Y, Du Y, Jaffé R, Findlay RH, Wynn A (2018) Climatic and watershed controls of dissolved organic matter variation in streams across a gradient of agricultural land use. Sci Total Environ 612:1442–1453

    Article  Google Scholar 

  • Sigman DM, Casciotti KL, Andreani M, Barford C, Galanter M, Böhlke JK (2001) A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Anal Chem 73:4145–4153

    Article  Google Scholar 

  • Slomp C, Van Cappellen P (2004) Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact. J Hydrol 295:64–86

    Article  Google Scholar 

  • Smith CG, Osterman LE (2014) An evaluation of temporal changes in sediment accumulation and impacts on carbon burial in Mobile Bay, Alabama, USA. Estuaries Coasts 37:1092–1106

    Article  Google Scholar 

  • Smith CG, Swarzenski PW (2012) An investigation of submarine groundwater-borne nutrient fluxes to the west Florida shelf and recurrent harmful algal blooms. Limnol Oceanogr 57:471–485

    Article  Google Scholar 

  • Spiteri C, Slomp CP, Charette MA, Tuncay K, Meile C (2008) Flow and nutrient dynamics in a subterranean estuary (Waquoit Bay, MA, USA): field data and reactive transport modeling. Geochim Cosmochim Acta 72:3398–3412

    Article  Google Scholar 

  • Stanek W, Silc T (1977) Comparisons of four methods for determination of degree of peat humification (decomposition) with emphasis on the von Post method. Can J Soil Sci 57:109–117

    Article  Google Scholar 

  • Stanier R, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev 35:171

    Google Scholar 

  • Stedmon CA, Bro R (2008) Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial. Limnol Oceanogr Methods 6:572–579

    Article  Google Scholar 

  • Stumpf RP, Gelfenbaum G, Pennock JR (1993) Wind and tidal forcing of a buoyant plume, Mobile Bay, Alabama. Cont Shelf Res 13:1281–1301

    Article  Google Scholar 

  • Su N, Burnett WC, MacIntyre HL, Liefer JD, Peterson RN, Viso R (2014) Natural radon and radium isotopes for assessing groundwater discharge into Little Lagoon, AL: implications for harmful algal blooms. Estuaries Coasts 37:893–910

    Article  Google Scholar 

  • Sun L, Toyonaga M, Ohashi A, Tourlousse DM, Matsuura N, Meng XY, Tamaki H, Hanada S, Cruz R, Yamaguchi T, Sekiguchi Y (2016) Lentimicrobium saccharophilum gen. nov., sp. nov., a strictly anaerobic bacterium representing a new family in the phylum Bacteroidetes, and proposal of Lentimicrobiaceae fam. nov. Int J Syst Evol Microbiol 66:2635–2642

    Article  Google Scholar 

  • Tiedje JM (1988) Ecology of denitrification and dissimilatory nitrate reduction to ammonium. Biol Anaerob Microorg 717:179–244

    Google Scholar 

  • Turner R, Schroeder W, Wiseman WJ (1987) The role of stratification in the deoxygenation of Mobile Bay and adjacent shelf bottom waters. Estuaries 10:13–19

    Article  Google Scholar 

  • Valiela I, Costa J, Foreman K, Teal JM, Howes B, Aubrey D (1990) Transport of groundwater-borne nutrients from watersheds and their effects on coastal waters. Biogeochemistry 10:177–197

    Article  Google Scholar 

  • Valiela I, Geist M, McClelland J, Tomasky G (2000) Nitrogen loading from watersheds to estuaries: verification of the Waquoit Bay nitrogen loading model. Biogeochemistry 49:277–293

    Article  Google Scholar 

  • Walter GR, Kidd RE (1979) Ground-water management techniques for the control of salt-water encroachment in Gulf Coast aquifers, a summary report. Geological Survey of Alabama Open-file Report, p 84

  • Ward GM, Harris PM, Ward AK (2005) Gulf Coast rivers of the southeastern United States. In: Benke AC, Cushing CE (eds) Rivers of North America. Elsevier Press, Burlington, pp 125–178

    Google Scholar 

  • Watson SW, Bock E, Valois FW, Waterbury JB, Schlosser U (1986) Nitrospira marina gen. nov. sp. nov.: a chemolithotrophic nitrite-oxidizing bacterium. Arch Microbiol 144:1–7

    Article  Google Scholar 

  • Weiskel PK, Howes BL (1992) Differential transport of sewage-derived nitrogen and phosphorus through a coastal watershed. Environ Sci Technol 26:352–360

    Article  Google Scholar 

  • Weiss JV, Rentz JA, Plaia T, Neubauer SC, Merrill-Floyd M, Lilburn T, Bradburne C, Megonigal JP, Emerson D (2007) Characterization of neutrophilic Fe(II)-oxidizing bacteria isolated from the rhizosphere of wetland plants and description of Ferritrophicum radicicola gen. nov. sp. nov., and Sideroxydans paludicola sp. nov. Geomicrobiol J 24:559–570

    Article  Google Scholar 

  • Wheeler KI, Levia DF, Hudson JE (2017) Tracking senescence-induced patterns in leaf litter leachate using parallel factor analysis (PARAFAC) modeling and self-organizing maps. J Geophys Res Biogeosci 122:2233–2250

    Article  Google Scholar 

  • Widdel F, Pfennig N (1982) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids II. Incomplete oxidation of propionate by Desulfobulbus propionicus gen. nov., sp. nov. Arch Microbiol 131:360–365

    Article  Google Scholar 

  • Wolfe DA, Kjerfve B (1986) Estuarine variability: an overview. In: Wolfe DA (ed) Estuarine variability. Elsevier, Amsterdam, pp 3–17

    Chapter  Google Scholar 

  • Xu B, Burnett W, Dimova N, Diao S, Mi T, Jiang X, Yu Z (2013) Hydrodynamics in the Yellow River Estuary via radium isotopes: ecological perspectives. Cont Shelf Res 66:19–28

    Article  Google Scholar 

  • Xue D, Botte J, De Baets B, Accoe F, Nestler A, Taylor P, Van Cleemput O, Berglund M, Boeckx P (2009) Present limitations and future prospects of stable isotope methods for nitrate source identification in surface- and groundwater. Water Res 43:1159–1170

    Article  Google Scholar 

  • Yamada T, Sekiguchi Y, Hanada S, Imachi H, Ohashi A, Harada H, Kamagata Y (2006) Anaerolinea thermolimosa sp. nov., Levilinea saccharolytica gen. nov., sp. nov. and Leptolinea tardivitalis gen. nov., sp. nov., novel filamentous anaerobes, and description of the new classes Anaerolineae classis nov. and Caldilineae classis nov. in the bacterial phylum Chloroflexi. Int J Syst Evol Microbiol 56:1331–1340

    Article  Google Scholar 

  • Yamaguchi M, Itakura S, Uchida T (2001) Nutrition and growth kinetics in nitrogen- or phosphorus-limited cultures of the ‘novel red tide’ dinoflagellate Heterocapsa circularisquama (Dinophyceae). Phycologia 40:313–318

    Article  Google Scholar 

  • Yamashita Y, Jaffé R, Maie N, Tanoue E (2008) Assessing the dynamics of dissolved organic matter (DOM) in coastal environments by excitation emission matrix fluorescence and parallel factor analysis (EEM-PARAFAC). Limnol Oceanogr 53:1900–1908

    Article  Google Scholar 

  • Yevenes M, Soetaert K, Mannaerts C (2016) Tracing nitrate-nitrogen sources and modifications in a stream impacted by various land uses, south Portugal. Water 8:385

    Article  Google Scholar 

  • Zanini L, Robertson WD, Ptacek CJ, Schiff SL, Mayer T (1998) Phosphorus characterization in sediments impacted by septic effluent at four sites in central Canada. J Contam Hydrol 33:405–429

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially funded by the National Science Foundation (NSF OIA-1632825), the 2016 ExxonMobil Summer Fund, the 2015 Gulf Coast Association of Geological Societies Student Research Grant, the University of Alabama Graduate School Research and Travel Support Fund, the UA Department of Geological Sciences W. Gary Hooks and the A. S. Johnson Travel Fund. We also want to thank the Weeks Bay National Estuarine Research Reserve and the Army Corp of Engineers in Mobile for providing technical support during all field campaigns.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Montiel.

Additional information

Responsible Editor: Sujay Kaushal

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1584 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montiel, D., Lamore, A.F., Stewart, J. et al. Natural groundwater nutrient fluxes exceed anthropogenic inputs in an ecologically impacted estuary: lessons learned from Mobile Bay, Alabama. Biogeochemistry 145, 1–33 (2019). https://doi.org/10.1007/s10533-019-00587-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-019-00587-0

Keywords

Navigation