, Volume 142, Issue 1, pp 155–174 | Cite as

Differential influence of landscape features and climate on nitrogen and phosphorus transport throughout the watershed

  • Jean-Olivier GoyetteEmail author
  • Elena M. Bennett
  • Roxane Maranger


Anthropogenic activities have led to increased transfers of nitrogen (N) and phosphorus (P) to surface waters where changes in the absolute amounts of N and P delivery, and in N:P ratios, threaten water quality. While models of riverine fluxes are increasingly good at predicting total annual nutrient loads, our understanding of which features of a watershed differentially affect N and P transport downstream is still limited. In this study, we used linear mixed models to quantify the relative transport of N and P through different landscape and limnoscape compartments (e.g. hill slopes, lakes, reservoirs,) under a variety of climate regimes over 26 years in 18 watersheds of the St. Lawrence Basin. Water retention capacity and precipitation patterns were the features that most strongly influenced nutrient export from land to water, where P was preferentially retained in the landscape over N when water retention capacity was highest. Lakes and reservoirs also emerged as features that influenced nutrient fluxes, where lakes preferentially retain more P over N and reservoirs tended to export N. Factors that favor erosion, such as flashiness of precipitation and land-use change also alter N:P ratios in receiving waters, largely by mobilizing legacy sources of P.


Watershed Nitrogen Phosphorus Dams Lakes Nutrient fluxes Stoichiometry 



We thank JF Lapierre, M Botrel, N Fortin St Gelais and other members of the Maranger lab for helpful suggestions. We thank two anonymous reviewers for helpful comments that improved the manuscript. This research was supported by Fonds de Recherche Nature et Technologie du Québec (FQRNT) and Groupe de Recherche Interuniversitaire en Limnologie et environnement aquatique (GRIL) student scholarship Grants to JOG and a National Science and Engineering Research Council of Canada (NSERC) Discovery Grant to RM.

Supplementary material

10533_2018_526_MOESM1_ESM.pdf (1.1 mb)
Supplementary material 1 (PDF 1166 kb)


  1. Alexander RB, Smith RA, Schwarz GE, Boyer EW, Nolan JV, Brakebill JW (2008) Differences in phosphorus and nitrogen delivery to the gulf of Mexico from the Mississippi river basin. Environ Sci Technol 42:822–830CrossRefGoogle Scholar
  2. Appling AP, Leon MC, McDowell WH (2015) Reducing bias and quantifying uncertainty in watershed flux estimates: the R package loadflex. Ecosphere 6:1–25CrossRefGoogle Scholar
  3. Arbuckle KE, Downing JA (2001) The influence of watershed land use on lake N:P in a predominantly agricultural landscape. Limnol Oceanogr 46:970–975CrossRefGoogle Scholar
  4. Banque de Données Sur la Qualité du Milieu Aquatique (BQMA; Ministère du Développement Durable, de l’Environnement et de la Lutte Contre les Changements Climatiques) (2018)
  5. Bates D, Mächler M, Bolker B, Walker S (2014) Fitting linear mixed-effects models using lme4. arXiv:1406.5823
  6. Bernhardt ES, Blaszczak JR, Ficken CD, Fork ML, Kaiser KE, Seybold EC (2017) Control points in ecosystems: moving beyond the hot spot hot moment concept. Ecosystems 20:665–682CrossRefGoogle Scholar
  7. Billen G, Garnier J (1999) Nitrogen transfers through the Seine drainage network: a budget based on the application of theRiverstrahler’model. Hydrobiologia 410:139–150CrossRefGoogle Scholar
  8. Blanchet FG, Legendre P, Borcard D (2008) Forward selection of explanatory variables. Ecology 89:2623–2632CrossRefGoogle Scholar
  9. Budyko MI (1974) Climate and Life. In: David H (ed) Miller. Academic Press, San DiegoGoogle Scholar
  10. Carpenter SR (2005) Eutrophication of aquatic ecosystems: bistability and soil phosphorus. Proc Natl Acad Sci USA 102:10002–10005CrossRefGoogle Scholar
  11. Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8:559–568CrossRefGoogle Scholar
  12. Carpenter SR, Booth EG, Kucharik CJ (2017) Extreme precipitation and phosphorus loads from two agricultural watersheds. Limnol Oceanogr 63:1221–1233CrossRefGoogle Scholar
  13. Carrascal LM, Galván I, Gordo O (2009) Partial least squares regression as an alternative to current regression methods used in ecology. Oikos 118:681–690CrossRefGoogle Scholar
  14. Centre d’Expertise Hydrique du Québec (2018)
  15. Chen F, Hou L, Liu M, Zheng Y, Yin G, Lin X, Li X, Zong H, Deng F, Gao J (2016) Net anthropogenic nitrogen inputs (NANI) into the Yangtze River basin and the relationship with riverine nitrogen export. J Geophys Res 121:451–465CrossRefGoogle Scholar
  16. Chen D, Shen H, Hu M, Wang J, Zhang Y, Dahlgren RA (2018) Legacy nutrient dynamics at the watershed scale: principles, modeling, and implications. Adv Agron 149:237–313CrossRefGoogle Scholar
  17. Cohen J, Cohen P, West SG, Aiken LS (2013) Applied multiple regression/correlation analysis for the behavioral sciences. Routledge, LondonCrossRefGoogle Scholar
  18. Collins SM, Oliver SK, Lapierre JF, Stanley EH, Jones JR, Wagner T, Soranno PA (2017) Lake nutrient stoichiometry is less predictable than nutrient concentrations at regional and sub-continental scales. Ecol Appl 27:1529–1540CrossRefGoogle Scholar
  19. Cooke SE, Prepas EE (1998) Stream phosphorus and nitrogen export from agricultural and forested watersheds on the Boreal Plain. Can J Fish Aquat Sci 55:2292–2299CrossRefGoogle Scholar
  20. Dodds WK, Bouska WW, Eitzmann JL, Pilger TJ, Pitts KL, Riley AJ, Schloesser JT, Thornbrugh DJ (2009) Eutrophication of US freshwaters: analysis of potential economic damages. Environ Sci Technol 43:12–19CrossRefGoogle Scholar
  21. Enders CK, Tofighi D (2007) Centering predictor variables in cross-sectional multilevel models: a new look at an old issue. Psychol Methods 12:121CrossRefGoogle Scholar
  22. Frank H, Patrick S, Peter W, Hannes F (2000) Export of dissolved organic carbon and nitrogen from Gleysol dominated catchments—the significance of water flow paths. Biogeochemistry 50:137–161CrossRefGoogle Scholar
  23. Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vorosmarty CJ (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226CrossRefGoogle Scholar
  24. Goyette JO, Bennett EM, Howarth RW, Maranger R (2016) Changes in anthropogenic nitrogen and phosphorus inputs to the St. Lawrence sub-basin over 110 years and impacts on riverine export. Global Biogeochem Cycles 30:1000–1014CrossRefGoogle Scholar
  25. Goyette J-O, Bennett E, Maranger R (2018) Low buffering capacity and slow recovery of anthropogenic phosphorus pollution in watersheds. Nat Geosci. Google Scholar
  26. Graham MH (2003) Confronting multicollinearity in ecological multiple regression. Ecology 84:2809–2815CrossRefGoogle Scholar
  27. Grantz EM, Haggard BE, Scott JT (2014) Stoichiometric imbalance in rates of nitrogen and phosphorus retention, storage, and recycling can perpetuate nitrogen deficiency in highly-productive reservoirs. Limnol Oceanogr 59:2203–2216CrossRefGoogle Scholar
  28. Green MB, Finlay JC (2010) Patterns of hydrologic control over stream water total nitrogen to total phosphorus ratios. Biogeochemistry 99:15–30CrossRefGoogle Scholar
  29. Green MB, Nieber JL, Johnson G, Magner J, Schaefer B (2007) Flow path influence on an N:P ratio in two headwater streams: a paired watershed study. J Geophys Res. Google Scholar
  30. Hamilton SK (2012) Biogeochemical time lags may delay responses of streams to ecological restoration. Freshw Biol 57:43–57CrossRefGoogle Scholar
  31. Hansen AT, Dolph CL, Foufoula-Georgiou E, Finlay JC (2018) Contribution of wetlands to nitrate removal at the watershed scale. Nat Geosci 11:127CrossRefGoogle Scholar
  32. Harrison JA, Maranger RJ, Alexander RB, Giblin AE, Jacinthe P-A, Mayorga E, Seitzinger SP, Sobota DJ, Wollheim WM (2009) The regional and global significance of nitrogen removal in lakes and reservoirs. Biogeochemistry 93:143–157CrossRefGoogle Scholar
  33. Hayes NM, Deemer BR, Corman JR, Razavi NR, Strock KE (2017) Key differences between lakes and reservoirs modify climate signals: a case for a new conceptual model. Limnol Oceanogr Lett 2:47–62CrossRefGoogle Scholar
  34. Heathwaite L, Haygarth P, Matthews R, Preedy N, Butler P (2005) Evaluating colloidal phosphorus delivery to surface waters from diffuse agricultural sources. J Environ Qual 34:287–298Google Scholar
  35. Hill A, Kemp W, Buttle J, Goodyear D (1999) Nitrogen chemistry of subsurface storm runoff on forested Canadian Shield hillslopes. Water Resour Res 35:811–821CrossRefGoogle Scholar
  36. Holtan H, Kamp-Nielsen L, Stuanes A (1988) Phosphorus in soil, water and sediment: an overview. Hydrobiologia 170:19–34CrossRefGoogle Scholar
  37. Hong B, Swaney DP, Mörth C-M, Smedberg E, Eriksson Hägg H, Humborg C, Howarth RW, Bouraoui F (2012) Evaluating regional variation of net anthropogenic nitrogen and phosphorus inputs (NANI/NAPI), major drivers, nutrient retention pattern and management implications in the multinational areas of Baltic Sea basin. Ecol Model 227:117–135CrossRefGoogle Scholar
  38. Howarth RW, Billen G, Swaney D, Townsend A, Jaworski N, Lajtha K, Downing JA, Elmgren R, Caraco N, Jordan T, Berendse F, Freney J, Kudeyarov V, Murdoch P, Zhu ZL (1996) Regional nitrogen budgets and riverine N&P fluxes for the drainages to the North Atlantic Ocean: natural and human influences. Biogeochemistry 35:75–139CrossRefGoogle Scholar
  39. Howarth R, Swaney D, Boyer E, Marino R, Jaworski N, Goodale C (2006) The influence of climate on average nitrogen export from large watersheds in the Northeastern United States. Biogeochemistry 79:163–186CrossRefGoogle Scholar
  40. Howarth R, Chan F, Conley DJ, Garnier J, Doney SC, Marino R, Billen G (2011) Coupled biogeochemical cycles: eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems. Front Ecol Environ 9:18–26CrossRefGoogle Scholar
  41. Howarth R, Swaney D, Billen G, Garnier J, Hong BG, Humborg C, Johnes P, Morth CM, Marino R (2012) Nitrogen fluxes from the landscape are controlled by net anthropogenic nitrogen inputs and by climate. Front Ecol Environ 10:37–43CrossRefGoogle Scholar
  42. Huang H, Chen D, Zhang B, Zeng L, Dahlgren RA (2014) Modeling and forecasting riverine dissolved inorganic nitrogen export using anthropogenic nitrogen inputs, hydroclimate, and land-use change. J Hydrol 517:95–104CrossRefGoogle Scholar
  43. IPCC (2014) Climate change 2014–impacts, adaptation and vulnerability: regional aspects. Cambridge University Press, CambridgeGoogle Scholar
  44. Jarvie HP, Sharpley AN, Spears B, Buda AR, May L, Kleinman PJ (2013) Water quality remediation faces unprecedented challenges from” legacy phosphorus”. Environ Sci Technol 47:8997–8998CrossRefGoogle Scholar
  45. Joosse P, Baker D (2011) Context for re-evaluating agricultural source phosphorus loadings to the Great Lakes. Can J Soil Sci 91:317–327CrossRefGoogle Scholar
  46. Kalff J (2002) Limnology: inland water ecosystems. Prentice Hall, Upper Saddle RiverGoogle Scholar
  47. Kirchner W, Dillon P (1975) An empirical method of estimating the retention of phosphorus in lakes. Water Resour Res 11:182–183CrossRefGoogle Scholar
  48. Kõiv T, Nõges T, Laas A (2011) Phosphorus retention as a function of external loading, hydraulic turnover time, area and relative depth in 54 lakes and reservoirs. Hydrobiologia 660:105–115CrossRefGoogle Scholar
  49. Kroeze C, Bouwman L, Seitzinger S (2012) Modeling global nutrient export from watersheds. Curr Opin Environ Sustain 4:195–202CrossRefGoogle Scholar
  50. Kusmer AS, Goyette J-O, MacDonald GK, Bennett EM, Maranger R, Withers PJA (2018) Watershed buffering of legacy phosphorus pressure at a regional scale: a comparison across space and time. Ecosystems. Google Scholar
  51. Larsen DP, Mercier H (1976) Phosphorus retention capacity of lakes. J Fisheries Board Can 33:1742–1750CrossRefGoogle Scholar
  52. Maavara T, Parsons CT, Ridenour C, Stojanovic S, Dürr HH, Powley HR, Van Cappellen P (2015) Global phosphorus retention by river damming. Proc Natl Acad Sci USA 112:15603–15608Google Scholar
  53. Maranger R, Jones SE, Cotner JB (2018) Stoichiometry of carbon, nitrogen, and phosphorus through the freshwater pipe. Limnol Oceanogr Lett 3:89–101CrossRefGoogle Scholar
  54. Mason RL, Gunst RF, Hess JL (2003) Statistical design and analysis of experiments: with applications to engineering and science. Wiley, LondonCrossRefGoogle Scholar
  55. McIsaac GF, David MB, Gertner GZ, Goolsby DA (2001) Eutrophication: nitrate flux in the Mississippi River. Nature 414:166CrossRefGoogle Scholar
  56. McKenney DW, Hutchinson MF, Papadopol P, Lawrence K, Pedlar J, Campbell K, Milewska E, Hopkinson RF, Price D, Owen T (2011) Customized spatial climate models for North America. Bull Am Meteor Soc 92:1611–1622CrossRefGoogle Scholar
  57. Mulholland PJ, Helton AM, Poole GC, Hall RO, Hamilton SK, Peterson BJ, Tank JL, Ashkenas LR, Cooper LW, Dahm CN (2008) Stream denitrification across biomes and its response to anthropogenic nitrate loading. Nature 452:202–205CrossRefGoogle Scholar
  58. Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142CrossRefGoogle Scholar
  59. Natural Resources Canada (2003), National scale frameworks hydrology—Drainage network, Canada (digital dataset). Accessed June 2018
  60. Newbold JD, Elwood JW, O’Neill RV, Winkle WV (1981) Measuring nutrient spiralling in streams. Can J Fish Aquat Sci 38:860–863CrossRefGoogle Scholar
  61. Nixon SW, Ammerman JW, Atkinson LP, Berounsky VM, Billen G, Boicourt WC, Boynton WR, Church TM, Ditoro DM, Elmgren R, Garber JH, Giblin AE, Jahnke RA, Owens NJP, Pilson MEQ, Seitzinger SP (1996) The fate of nitrogen and phosphorus at the land sea margin of the North Atlantic Ocean. Biogeochemistry 35:141–180CrossRefGoogle Scholar
  62. Nowlin WH, Evarts JL, Vanni MJ (2005) Release rates and potential fates of nitrogen and phosphorus from sediments in a eutrophic reservoir. Freshw Biol 50:301–322CrossRefGoogle Scholar
  63. Ockenden M, Deasy CE, Benskin CMH, Beven KJ, Burke S, Collins AL, Evans R, Falloon PD, Forber KJ, Hiscock KM (2016) Changing climate and nutrient transfers: evidence from high temporal resolution concentration-flow dynamics in headwater catchments. Sci Total Environ 548:325–339CrossRefGoogle Scholar
  64. Paerl HW (2009) Controlling eutrophication along the freshwater–marine continuum: dual nutrient (N and P) Reductions are Essential. Estuar Coasts 32:593–601CrossRefGoogle Scholar
  65. Pellerin S, Poulin M (2013) Analyse de la situation des milieux humides au Québec et recommandations à des fins de conservation et de gestion durable. Rapport final présenté au Ministère du développement durable, de l’environnement, de la faune et des parcsGoogle Scholar
  66. Powers S, Tank J, Robertson D (2015) Control of nitrogen and phosphorus transport by reservoirs in agricultural landscapes. Biogeochemistry 124:417–439CrossRefGoogle Scholar
  67. Price K (2011) Effects of watershed topography, soils, land use, and climate on baseflow hydrology in humid regions: a review. Prog Phys Geogr 35:465–492CrossRefGoogle Scholar
  68. Roderick ML, Farquhar GD (2011) A simple framework for relating variations in runoff to variations in climatic conditions and catchment properties. Water Resour Res 47:12Google Scholar
  69. Runkel RL, Crawford CG, Cohn TA (2004) Load estimator (LOADEST): a FORTRAN program for estimating constituent loads in streams and rivers. CreateSpace Independent Publishing, Scotts Valley, pp 2328–7055Google Scholar
  70. Russell MJ, Weller DE, Jordan TE, Sigwart KJ, Sullivan KJ (2008) Net anthropogenic phosphorus inputs: spatial and temporal variability in the Chesapeake Bay region. Biogeochemistry 88:285–304CrossRefGoogle Scholar
  71. Saunders DL, Kalff J (2001) Nitrogen retention in wetlands, lakes and rivers. Hydrobiologia 443:205–212CrossRefGoogle Scholar
  72. Schlesinger WH, Bernhardt ES (2013) Biogeochemistry: an analysis of global change. Academic Press, New YorkGoogle Scholar
  73. Scott JT, McCarthy MJ, Otten TG, Steffen MM, Baker BC, Grantz EM, Wilhelm SW, Paerl HW, Smith R (2013) Comment: an alternative interpretation of the relationship between TN: TP and microcystins in Canadian lakes. Can J Fish Aquat Sci 70:1265–1268CrossRefGoogle Scholar
  74. Sebilo M, Mayer B, Nicolardot B, Pinay G, Mariotti A (2013) Long-term fate of nitrate fertilizer in agricultural soils. Proc Natl Acad Sci USA 110:18185–18189CrossRefGoogle Scholar
  75. Seitzinger S, Harrison JA, Böhlke J, Bouwman A, Lowrance R, Peterson B, Tobias C, Drecht GV (2006) Denitrification across landscapes and waterscapes: a synthesis. Ecol Appl 16:2064–2090CrossRefGoogle Scholar
  76. Seitzinger SP, Mayorga E, Bouwman AF, Kroeze C, Beusen AHW, Billen G, Van Drecht G, Dumont E, Fekete BM, Garnier J, Harrison JA (2010) Global river nutrient export: a scenario analysis of past and future trends. Glob Biogeochem Cycles 24:4Google Scholar
  77. Sharpley A, Jarvie HP, Buda A, May L, Spears B, Kleinman P (2013) Phosphorus legacy: overcoming the effects of past management practices to mitigate future water quality impairment. J Environ Qual 42:1308–1326CrossRefGoogle Scholar
  78. Soranno PA, Webster KE, Riera JL, Kratz TK, Baron JS, Bukaveckas PA, Kling GW, White DS, Caine N, Lathrop RC (1999) Spatial variation among lakes within landscapes: ecological organization along lake chains. Ecosystems 2:395–410CrossRefGoogle Scholar
  79. Soranno PA, Cheruvelil KS, Wagner T, Webster KE, Bremigan MT (2015) Effects of land use on lake nutrients: the importance of scale, hydrologic connectivity, and region. PLoS ONE 10:e0135454CrossRefGoogle Scholar
  80. Soulsby C, Tetzlaff D, Rodgers P, Dunn S, Waldron S (2006) Runoff processes, stream water residence times and controlling landscape characteristics in a mesoscale catchment: an initial evaluation. J Hydrol 325:197–221CrossRefGoogle Scholar
  81. Stanley EH, Doyle MW (2002) A geomorphic perspective on nutrient retention following dam removal: geomorphic models provide a means of predicting ecosystem responses to dam removal. AIBS Bull 52:693–701Google Scholar
  82. Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, PrincetonGoogle Scholar
  83. Swaney DP, Hong B, Ti C, Howarth RW, Humborg C (2012) Net anthropogenic nitrogen inputs to watersheds and riverine N export to coastal waters: a brief overview. Curr Opin Environ Sustain 4:203–211CrossRefGoogle Scholar
  84. Team, R. C. 2013. R: A language and environment for statistical computingGoogle Scholar
  85. Teodoru C, Wehrli B (2005) Retention of sediments and nutrients in the Iron Gate I Reservoir on the Danube River. Biogeochemistry 76:539–565CrossRefGoogle Scholar
  86. Tesoriero AJ, Duff JH, Saad DA, Spahr NE, Wolock DM (2013) Vulnerability of streams to legacy nitrate sources. Environ Sci Technol 47:3623–3629CrossRefGoogle Scholar
  87. Thornton KW, Kimmel BL, Payne FE (1990) Reservoir limnology: ecological perspectives. Wiley, New JerseyGoogle Scholar
  88. Van de Waal DB, Smith VH, Declerck SA, Stam E, Elser JJ (2014) Stoichiometric regulation of phytoplankton toxins. Ecol Lett 17:736–742CrossRefGoogle Scholar
  89. Van Meter KJ, Basu NB (2015) Catchment legacies and time lags: a parsimonious watershed model to predict the effects of legacy storage on nitrogen export. PLoS ONE 10:e0125971CrossRefGoogle Scholar
  90. Van Meter K, Basu N, Van Cappellen P (2017) Two centuries of nitrogen dynamics: legacy sources and sinks in the Mississippi and Susquehanna River Basins. Global Biogeochem Cycles 31:2–23CrossRefGoogle Scholar
  91. Van Meter K, Van Cappellen P, Basu N (2018) Legacy nitrogen may prevent achievement of water quality goals in the Gulf of Mexico. Science 360:427–430CrossRefGoogle Scholar
  92. Vollenweider RA (1976) Advances in defining critical loading levels for phosphorus in lake eutrophication. Memorie dell’Istituto Italiano di Idrobiologia, Dott. Marco de Marchi Verbania PallanzaGoogle Scholar
  93. Vought LB-M, Dahl J, Pedersen CL, Lacoursiere JO (1994) Nutrient retention in riparian ecotones. AMBIO 23:342–348Google Scholar
  94. Wollheim WM, Vörösmarty C, Peterson BJ, Seitzinger SP, Hopkinson CS (2006) Relationship between river size and nutrient removal. Geophys Res Lett 33:6CrossRefGoogle Scholar
  95. Wollheim WM, Vörösmarty CJ, Bouwman A, Green P, Harrison J, Linder E, Peterson BJ, Seitzinger SP, Syvitski JP (2008) Global N removal by freshwater aquatic systems using a spatially distributed, within basin approach. Glob Biogeochem Cycles. Google Scholar
  96. Wurtsbaugh WA, Baker MA, Gross H, Brown P (2005) Lakes as nutrient “sources” for watersheds: a landscape analysis of the temporal flux of nitrogen through sub-alpine lakes and streams. Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen 29:645–649Google Scholar
  97. Zhou M, Brandt P, Pelster D, Rufino MC, Robinson T, Butterbach-Bahl K (2014) Regional nitrogen budget of the Lake Victoria Basin, East Africa: syntheses, uncertainties and perspectives. Environ Res Lett 9:105009CrossRefGoogle Scholar
  98. Zhou G, Wei X, Chen X, Zhou P, Liu X, Xiao Y, Sun G, Scott DF, Zhou S, Han L (2015) Global pattern for the effect of climate and land cover on water yield. Nat Commun 6:5918CrossRefGoogle Scholar
  99. Zuur A, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer Science & Business Media, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Groupe de Recherche Interuniversitaire en Limnologie et en environnement aquatique (GRIL), Département de Sciences BiologiquesUniversité de MontréalMontrealCanada
  2. 2.Department of Natural Resource Sciences and McGill School of EnvironmentMcGill UniversityMontrealCanada

Personalised recommendations