Advertisement

Biogeochemistry

, Volume 141, Issue 2, pp 143–165 | Cite as

The influence of cyanobacteria blooms on the attenuation of nitrogen throughputs in a Baltic coastal lagoon

  • M. Zilius
  • I. Vybernaite-Lubiene
  • D. Vaiciute
  • J. Petkuviene
  • P. Zemlys
  • I. Liskow
  • M. Voss
  • M. Bartoli
  • P. A. BukaveckasEmail author
Article

Abstract

We combined a mass balance approach with measurements of air–water and sediment–water nitrogen (N) exchange to better understand the mechanisms attenuating N throughputs in a eutrophic coastal lagoon. We were particularly interested in how seasonal shifts in external versus internal N fluxes and the transition from diatom- to cyanobacteria- dominated phytoplankton communities influence N storage and loss to the atmosphere. We found that on an annual basis almost all of the N removed by the lagoon was due to sediment storage following the spring diatom bloom. This period was characterized by high riverine inputs of dissolved inorganic nitrogen, high rates of assimilatory conversion to particulate nitrogen (PN), and net accrual of N in sediments. By contrast, the larger summer bloom was associated with low sediment N storage, which we attribute in part to the presence of positively-buoyant cyanobacteria. Low settling rates during cyanobacteria blooms favored export of PN to the Baltic Sea over sediment accrual in the lagoon. In addition, summer dinitrogen (N2) fixation by cyanobacteria largely offset annual N2 losses via denitrification. These findings show that cyanobacteria blooms diminish N attenuation within the lagoon by altering the balance of N exchange with the atmosphere and by promoting export of particulate N over sediment burial.

Keywords

Nitrogen Mass balance Algal blooms Cyanobacteria Baltic Sea Coastal lagoons 

Notes

Acknowledgements

We kindly thank the Coast Guard District of the State Border Guard Service for logistic support, our boat crews for outstanding field campaigns between drifting ices sheets, and Tomas Ruginis for assistance in field sampling. Manuscript preparation was supported by the BONUS project “Nutrient Cocktails in Coastal zones of the Baltic Sea (COCOA)” (No. BONUS-2/2014 and BONUS- COCOA BMBF funded under 03F0683A). The study was partly supported by the Lithuanian EPA project (No. 28TP-2015-19 SUT-15P-13). We gratefully thank the Lithuanian Marine Research Department of the Ministry of Environment for providing meteorological and Nemunas River discharge data. We are indebted to the associated editor of journal and two anonymous reviewers for their constructive comments.

References

  1. Adam B, Klawonn I, Svedén JB, Bergkvist J, Nahar N, Walve J, Littmann S, Whitehouse MJ, Lavik G, Kuypers MMM, Ploug H (2016) Significant N2-fixation, ammonium release and N-transfer to the microbial and classical food web within a plankton community. ISME 10:450–459.  https://doi.org/10.1038/ismej.2015.126 CrossRefGoogle Scholar
  2. Almroth-Rosell E, Edman M, Eilola K, Markus Meier HE, Sahlberg J (2016) Modelling nutrient retention in the coastal zone of an eutrophic sea. Biogeosciences 13:5753–5769.  https://doi.org/10.5194/bg-13-5753-2016 CrossRefGoogle Scholar
  3. Andersson B, Sundbäck K, Hellman M, Hallin S, Alsterberg C (2014) Nitrogen fixation in shallow-water sediments: spatial distribution and controlling factors. Limnol Oceanogr 59:1932–1944.  https://doi.org/10.4319/lo.2014.59.6.1932 CrossRefGoogle Scholar
  4. Asmala E, Carstensen J, Conley DJ, Slomp CP, Stadmark J, Voss M (2017) Efficiency of the coastal filter: nitrogen and phosphorus removal in the Baltic Sea. Limnol Oceanogr 62:S222–S238.  https://doi.org/10.1002/lno.10644 CrossRefGoogle Scholar
  5. Benavides M, Martias C, Elifantz H, Berman-Frank I, Dupouy C, Bonnet S (2018) Dissolved organic matter influences N2 fixation in the New Caledonian Lagoon (western tropical south pacific). Front Mar Sci 5:89.  https://doi.org/10.3389/fmars.2018.00089 CrossRefGoogle Scholar
  6. Bentzon-Tilia M, Traving SJ, Mantikci M, Knudsen-Leerbeck H, Hansen JLS, Markager S, Riemann L (2015) Significant N-2 fixation by heterotrophs, photoheterotrophs and heterocystous cyanobacteria in two temperate estuaries. ISME J 9:273–285.  https://doi.org/10.1038/ismej.2014.119 CrossRefGoogle Scholar
  7. Bertos-Fortis M, Farnelid HM, Lindh MV, Casini M, Andersson A, Pinhassi J, Legrand C (2016) Unscrambling cyanobacteria community dynamics related to environmental factors. Front Microbiol 7:625.  https://doi.org/10.3389/fmicb.2016.00625 CrossRefGoogle Scholar
  8. Bianchi TS, Engelhaupt E, Westman P, Andren T, Rolff C, Elmgren R (2000) Cyanobacterial blooms in the Baltic Sea: natural or human-induced? Limnol Oceanogr 45:716–726.  https://doi.org/10.4319/lo.2000.45.3.0716 CrossRefGoogle Scholar
  9. Bonaglia S, Deutsch B, Bartoli M, Marchant HK, Brüchert V (2014) Seasonal oxygen, nitrogen and phosphorus benthic cycling along an impacted Baltic Sea estuary: regulation and spatial patterns. Biogeochemistry 119(1–3):139–160.  https://doi.org/10.1007/s10533-014-9953-6 CrossRefGoogle Scholar
  10. Bower CE, Holm-Hansen T (1980) A salicylate-hypochlorite method for determining ammonia in seawater. Can J Fish Aquat Sci 37(5):794–798CrossRefGoogle Scholar
  11. Boyer EW, Howarth RW (2008) Nitrogen fluxes from rivers to the coastal oceans. In: Nitrogen in the marine environment, 2nd edn. Academic Press, San Diego, pp 1565–1587CrossRefGoogle Scholar
  12. Boyer EW, Goodale CL, Jaworski NA, Howarth RW (2002) Effects of anthropogenic nitrogen loading on riverine nitrogen export in the northeastern US. Biogeochemistry 57(58):137–169.  https://doi.org/10.1023/A:1015709302073 CrossRefGoogle Scholar
  13. Bresciani M, Adamo M, De Carolis G, Matta E, Pasquariello G, Vaičiūtė D, Giardino C (2014) Monitoring blooms and surface accumulation of cyanobacteria in the Curonian Lagoon by combining MERIS and ASAR data. Remote Sens Environ 146:124–135.  https://doi.org/10.1016/j.rse.2013.07.040 CrossRefGoogle Scholar
  14. Brion N, Andersson MGI, Elskens M, Diaconu C, Baeyens W, Dehairs F, Middelburg JJ (2008) Nitrogen cycling, retention and export in a eutrophic temperate macrotidal estuary. Mar Ecol Prog Ser 357:87–99.  https://doi.org/10.3354/meps07249 CrossRefGoogle Scholar
  15. Bronk DA, Glibert PM, Ward BB (1994) Nitrogen uptake, dissolved organic nitrogen release, and new production. Science 265(5180):1843–1846.  https://doi.org/10.1126/science.265.5180.1843 CrossRefGoogle Scholar
  16. Bruesewitz DA, Gardner WS, Mooney RF, Pollard L, Buskey EJ (2013) Estuarine ecosystem function response to flood and drought in a shallow, semiarid estuary: nitrogen cycling and ecosystem metabolism. Limnol Oceanogr 58:2293–2309.  https://doi.org/10.4319/lo.2013.58.6.2293 CrossRefGoogle Scholar
  17. Bruesewitz DA, Gardner WS, Mooney RF, Buskey EJ (2015) Seasonal water column NH4 cycling along a semi-arid sub-tropical river-estuary continuum: responses to episodic events and drought conditions. Ecosystems 18:792–812CrossRefGoogle Scholar
  18. Bukaveckas PA, Barry LE, Beckwith MJ, David V, Lederer B (2011) Factors determining the location of the chlorophyll maximum and the fate of algal production within the tidal freshwater James River. Estuaries Coasts 34:569–582.  https://doi.org/10.1007/s12237-010-9372-4 CrossRefGoogle Scholar
  19. Bukaveckas PA, Beck M, Devore D, Lee WM (2017a) Climatic variability and its role in regulating C, N and P retention in the James River Estuary. Estuar Coast Shelf Sci 100:101.  https://doi.org/10.1016/j.ecss.2017.10.004 CrossRefGoogle Scholar
  20. Bukaveckas PA, Lesutiene J, Gasiunaite ZR, Lozys L, Olenina I, Pilkaityte R, Putys Z, Tassone S, Wood JD (2017b) Microcystin in aquatic food webs of the Baltic and Chesapeake Bay regions. Estuar Coast Shelf Sci 191:50–59.  https://doi.org/10.1016/j.ecss.2017.04.016 CrossRefGoogle Scholar
  21. Cairns J, Coloma S, Sivonen K, Hiltunen T (2016) Evolving interactions between diazotrophic cyanobacterium and phage mediate nitrogen release and host competitive ability. R Soc Open Sci 3:160839.  https://doi.org/10.1098/rsos.160839 CrossRefGoogle Scholar
  22. Cavaliere E, Baulch HM (2018) Denitrification under lake ice. Biogeochemistry.  https://doi.org/10.1007/s10533-018-0419-0 CrossRefGoogle Scholar
  23. Chu Z, Jin X, Yang B, Zeng Q (2007) Buoyancy regulation of Microcystis flos-aquae during phosphorus-limited and nitrogen-limited growth. J Plankton Res 29(9):739–745.  https://doi.org/10.1093/plankt/fbm054 CrossRefGoogle Scholar
  24. Dalsgaard T, Nielsen LP, Brotas V, Viaroli P, Underwood G, Nedwell D, Sundbäck K, Rysgaard S, Miles A, Bartoli M, Dong L, Thornton DCO, Otossen LDM, Castaldelli G, Risgaard-Petersen N (2000) Protocol handbook for NICE—nitrogen cycling in estuaries: a project under the EU research program: Marine Science and Technology (MAST III). National Environmental Research Institute, SilkeborgGoogle Scholar
  25. Daunys D, Zemlys P, Olenin S, Zaiko A, Ferrarin C (2006) Impact of the zebra mussel Dreissena polymorpha invasion on the budget of suspended material in a shallow lagoon ecosystem. Helgoland Mar Res 60:113–120.  https://doi.org/10.1007/s10152-006-0028-5 CrossRefGoogle Scholar
  26. Deek A, Dähnke K, van Beusekom J, Meyer S, Voss M, Emeis K (2013) N2 fluxes in sediments of the Elbe Estuary and adjacent coastal zones. Mar Ecol Prog Ser 493:9–21.  https://doi.org/10.3354/meps10514 CrossRefGoogle Scholar
  27. Dettmann EH (2001) Effect of water residence time on annual export and denitrification of nitrogen in estuaries: a model analysis. Estuaries 24(4):481–490.  https://doi.org/10.2307/1353250 CrossRefGoogle Scholar
  28. Enoksson V (1993) Nutrient recycling by coastal sediments: effects of added algal material. Mar Ecol Prog Ser 92:245–254CrossRefGoogle Scholar
  29. Eyre BD, Ferguson AJP (2002) Comparison of carbon production and decomposition, benthic nutrient fluxes and denitrification in seagrass, phytoplankton, benthic microalgae- and macroalgae-dominated warm-temperate Australian lagoons. Mar Ecol Prog Ser 229:43–59CrossRefGoogle Scholar
  30. Eyre BD, Maher DT, Squire P (2013) Quantity and quality of organic matter (detritus) drives N2 effluxes (net denitrification) across seasons, benthic habitats, and estuaries. Glob Biogeochem Cycles 27:1083–1095.  https://doi.org/10.1002/2013GB004631 CrossRefGoogle Scholar
  31. Eyre BD, Maher DT, Sanders C (2016) The contribution of denitrification and burial to the nitrogen budgets of three geomorphically distinct Australian estuaries: importance of seagrass habitats. Limnol Oceanogr 61(3):1144–1156.  https://doi.org/10.1002/lno.10280 CrossRefGoogle Scholar
  32. Ferber LR, Levine SN, Lini A, Livingston GP (2004) Do cyanobacteria dominate in eutrophic lakes because they fix atmospheric nitrogen? Freshw Biol 49:690–708.  https://doi.org/10.1111/j.1365-2427.2004.01218.x CrossRefGoogle Scholar
  33. Findlay DL, Hecky RE, Hendzel LL, Stainton MP, Regehr GW (1994) Relationship between N2 fixation and heterocyst abundance and its relevance to the nitrogen budget of Lake 227. Can J Fish Aquat Sci 51:2254–2266CrossRefGoogle Scholar
  34. Fulweiler RW, Nixon SW (2012) Net sediment N2 fluxes in a southern New England estuary: variations in space and time. Biogeochemistry 111:111–124.  https://doi.org/10.1007/s10533-011-9660-5 CrossRefGoogle Scholar
  35. Gao Y, Cornwell JC, Stoecker DK, Owens MS (2014) Influence of cyanobacteria blooms on sediment biogeochemistry and nutrient fluxes. Limnol Oceanogr 59(3):959–971.  https://doi.org/10.4319/lo.2014.59.3.0959 CrossRefGoogle Scholar
  36. Grasshoff K, Ehrhardt M, Kremling K (1983) Methods of seawater analysis, 2nd edn. Verlag Berlin Chemie, BerlinGoogle Scholar
  37. Grelowski A, Pastuszak M, Sitek S, Witek Z (2000) Budget calculations of nitrogen, phosphorus and BOD 5 passing through the Oder estuary. J Mar Syst 25(3):221–237.  https://doi.org/10.1016/S0924-7963(00)00017-8 CrossRefGoogle Scholar
  38. Großkopf T, Mohr W, Baustian T, Schunck H, Gill D, Kuypers MMM, Lavik G, Schmitz RA, Wallace DWR, LaRoche J (2012) Doubling of marine dinitrogen-fixation rates based on direct measurements. Nature 488:361–364.  https://doi.org/10.1038/nature11338 CrossRefGoogle Scholar
  39. Hampel JJ, McCarthy MJ, Gardner WS, Zhang L, Xu H, Zhu G, Newell SE (2018) Nitrification and ammonium dynamics in Taihu Lake, China: seasonal competition for ammonium between nitrifiers and cyanobacteria. Biogeosciences 15:733–748CrossRefGoogle Scholar
  40. Hansen LS, Blackburn TH (1992) Effect of algal bloom deposition on sediment respiration and fluxes. Mar Biol 112:147–152CrossRefGoogle Scholar
  41. HELCOM (2015) Guidelines for the Baltic Monitoring Programme for the third stage, Part D. Biological determinands. In: Baltic Sea Environment Proceedings No. 27 D. Baltic Marine Environment Protection Commission, Helsinki Commission, p 164Google Scholar
  42. Hietanen S, Kuoparinen J (2008) Seasonal and short-term variation in denitrification and anammox at a coastal station on the Gulf of Finland, Baltic Sea. Hydrobiologia 596(1):67–77.  https://doi.org/10.1007/s10750-007-9058-5 CrossRefGoogle Scholar
  43. Hietanen S, Lukkari K (2007) Effects of short-term anoxia on benthic denitrification, nutrient fluxes and phosphorus forms in coastal Baltic sediment. Aquat Microb Ecol 49:293–302.  https://doi.org/10.3354/ame01146 CrossRefGoogle Scholar
  44. Higgins SN, Paterson MJ, Hecky RE, Schindler DW, Venkiteswaran JJ, Findlay DL (2017) Biological nitrogen fixation prevents the response of a eutrophic lake to reduced loading of nitrogen: evidence from a 46-year whole-lake experiment. Ecosystems.  https://doi.org/10.1007/s10021-017-0204-2 CrossRefGoogle Scholar
  45. Howarth RW, Marino R, Lane J, Cole JJ (1988a) Nitrogen fixation in freshwater, estuarine and marine ecosystems. 1. Rates and importance. Limnol Oceanogr 33:669–687Google Scholar
  46. Howarth RW, Marino R, Cole JJ (1988b) Nitrogen fixation in freshwater, estuarine and marine ecosystems. 2. Biogeochemical controls. Limnol Oceanogr 33:688–701Google Scholar
  47. Howarth RW, Billen G, Swaney D, Townsend A, Jaworski NA, Lajtha K, Downing JA, Elmgren R, Caraco NF, Jordan T, Berendse F, Freney J, Kudeyarov V, Murdoch PS, Zhao-liang Z (1996) Regional nitrogen budgets and riverine N and P fluxes for the drainages to the North Atlantic Ocean: natural and human influences. Biogeochemistry 35:181–226.  https://doi.org/10.1007/BF02179825 CrossRefGoogle Scholar
  48. Huettel M, Berg P, Kostka JE (2014) Benthic exchange and biogeochemical cycling in permeable sediments. Annu Rev Mar Sci 6:23–51CrossRefGoogle Scholar
  49. Jakimavičius D, Kriaučiūnienė J (2013) The climate change impact on the water balance of the Curonian Lagoon. Water Resour 40(2):120–132.  https://doi.org/10.1134/S0097807813020097 CrossRefGoogle Scholar
  50. Jeffrey ST, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanz (BPP) 167:191–194CrossRefGoogle Scholar
  51. Kamarainen AM, Penczykowski RM, Van de Bogert MC, Hanson PC, Carpenter SR (2009) Phosphorus sources and demand during summer in a eutrophic lake. Aquat Sci 71:214–227.  https://doi.org/10.1007/s00027-009-9165-7 CrossRefGoogle Scholar
  52. Kana TM, Darkangelo C, Hunt MD, Oldham JB, Bennett GE, Cornwell JC (1994) Membrane inlet mass spectrometer for rapid high-precision determination of nitrogen, oxygen, and argon in environmental water samples. Anal Chem 66:4166–4170.  https://doi.org/10.1021/ac00095a009 CrossRefGoogle Scholar
  53. Knoll LB, Morgan A, Vanni MJ, Leach TH, Williamson TJ, Brentrup JA (2016) Quantifying pelagic phosphorus regeneration using three methods in lakes of varying productivity. Inland Waters 6:509–522.  https://doi.org/10.1080/IW-6.4.86 CrossRefGoogle Scholar
  54. Lesutienė J, Bukaveckas PA, Gasiūnaitė ZR, Pilkaitytė R, Razinkovas-Baziukas A (2014) Tracing the isotopic signal of a cyanobacteria bloom through the food web of a Baltic Sea coastal lagoon. Estuar Coast Shelf Sci 138:47–56.  https://doi.org/10.1016/j.ecss.2013.12.017 CrossRefGoogle Scholar
  55. Loken L, Small GE, Finlay JC, Sterner R, Stanley EH (2016) Nitrogen cycling in a freshwater estuary. Biogeochemistry 127(2):1–18.  https://doi.org/10.1007/s10533-015-0175-3 CrossRefGoogle Scholar
  56. Lomstein BA, Jensen AGU, Hansen JW, Andreasen JB, Hansen LS, Berntsen J, Kunzendorf H (1998) Budgets of sediment nitrogen and carbon cycling in the shallow water of Knebel Vig, Denmark. Aquat Microb Ecol 14:69–80CrossRefGoogle Scholar
  57. McCarthy MJ, Gardner WS, Lehmann MF, Bird DF (2013) Implications of water column ammonium uptake and regeneration for the nitrogen budget in temperate, eutrophic Missisquoi Bay, Lake Champlain (Canada/USA). Hydrobiologia 718(1):173–188.  https://doi.org/10.1007/s10750-013-1614-6 CrossRefGoogle Scholar
  58. McCarthy MJ, Gardner WS, Lehmann MF, Guindon A, Bird DF (2016) Benthic nitrogen regeneration, fixation, and denitrification in a temperate, eutrophic lake: effects on the nitrogen budget and cyanobacteria blooms. Limnol Oceanogr 61:1406–1423.  https://doi.org/10.1002/lno.10306 CrossRefGoogle Scholar
  59. Mohr W, Großkopf T, Wallace DWR, LaRoche J (2010) Methodological underestimation of oceanic nitrogen fixation rates. PLoS ONE 5(9):e12583.  https://doi.org/10.1371/journal.pone.0012583 CrossRefGoogle Scholar
  60. Montoya PJ, Voss M, Kähler P, Capone DG (1996) A simple, high-precision, high-sensitivity tracer assay for N2 fixation. Appl Environ Microbiol 62(3):986–993Google Scholar
  61. Motwani N, Duberg J, Sved JB, Gorokhova E (2018) Grazing on cyanobacteria and transfer of diazotrophic nitrogen to zooplankton in the Baltic Sea. Limnol Oceanogr 63:672–686.  https://doi.org/10.1002/lno.10659 CrossRefGoogle Scholar
  62. Mulholland MR, Bernhardt PW, Blanco-Garcia JL, Mannino A, Hyde K, Mondragon E, Turk K, Moisander PH, Zehr JP (2012) Rates of dinitrogen fixation and the abundance of diazotrophs in North American coastal waters between Cape Hatteras and Georges Bank. Limnol Oceanogr 57:1067–1083.  https://doi.org/10.4319/lo.2012.57.4.1067 CrossRefGoogle Scholar
  63. Murrell MC, Lores EM (2004) Phytoplankton and zooplankton seasonal dynamics in a subtropical estuary: importance of cyanobacteria. J Plankton Res 26:371–382.  https://doi.org/10.1093/plankt/fbh038 CrossRefGoogle Scholar
  64. Nedwell DB, Jickells TD, Trimmer M, Sanders R (1999) Nutrients in estuaries. Adv Ecol Res 29:43–92CrossRefGoogle Scholar
  65. Newell SE, McCarthy MJ, Gardner WS, Fulweiler RW (2016) Sediment nitrogen fixation: a call for re-evaluating coastal N budgets. Estuaries Coasts 39(6):1626–1638.  https://doi.org/10.1007/s12237-016-0116-y CrossRefGoogle Scholar
  66. Nixon SW, Ammerman JW, Atkinson LP, Berounsky VM, Billen G, Boicourt WC, Boynton WR, Church TM, Ditoro DM, Elmgren R, Garber JH, Giblin AE, Jahnke RA, Owens PJ, Pilson MEQ, Seitzinger SP (1996) The fate of nitrogen and phosphorus at the land-sea margin of the North Atlantic Ocean. Biogeochemistry 35:141–180.  https://doi.org/10.1007/BF02179826 CrossRefGoogle Scholar
  67. Ohlendieck U, Gundersen K, Meyerhöfer M, Fritsche P, Nachtigall K, Bergmann B (2007) The significance of nitrogen fixation to new production during early summer in the Baltic Sea. Biogeosciences 4:63–73.  https://doi.org/10.5194/bg-4-63-2007 CrossRefGoogle Scholar
  68. Olenina I, Hajdu S, Edler L, Andersson A, Wasmund N, Busch S, Göbel J, Gromisz S, Huseby S, Huttunen M, Jaanus A, Kokkonen P, Ledaine I, Niemkiewicz E (2006) Biovolumes and size-classes of phytoplankton in the Baltic Sea. In: HELCOM Baltic Sea environmental proceedings, No. 106, p 144Google Scholar
  69. O’Neil JM, Davis TW, Burford MA, Gobler CJ (2012) The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14:313–334.  https://doi.org/10.1016/j.hal.2011.10.027 CrossRefGoogle Scholar
  70. Paerl HW, Otten TG (2013) Harmful cyanobacterial blooms: causes, consequences and controls. Microb Ecol 65:995–1010.  https://doi.org/10.1007/s00248-012-0159-y CrossRefGoogle Scholar
  71. Parson TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon Press, New YorkGoogle Scholar
  72. Petkuviene J, Zilius M, Lubiene I, Ruginis T, Giordani G, Razinkovas-Baziukas A, Bartoli M (2016) Phosphorus cycling in a freshwater estuary impacted by cyanobacterial blooms. Estuaries Coasts 39(5):1386–1402.  https://doi.org/10.1007/s12237-016-0078-0 CrossRefGoogle Scholar
  73. Pilkaitytė R, Razinkovas A (2007) Seasonal changes in phytoplankton composition and nutrient limitation in a shallow Baltic lagoon. Boreal Environ Res 12(5):551–559Google Scholar
  74. Pina-Ochoa E, Álvarez-Cobelas M (2006) Denitrification in aquatic environments: a cross-system analysis. Biogeochemistry 81:111–130.  https://doi.org/10.1007/s10533-006-9033-7 CrossRefGoogle Scholar
  75. Poister D, Armstrong DE (2004) Seasonal sedimentation trends in a mesotrophic lake: influence of diatoms and implications for phosphorus dynamics. Biogeochemistry 65:1–13CrossRefGoogle Scholar
  76. Porter ET, Sanford LP, Porter FS, Mason RP (2018) STURM: resuspension mesocosms with realistic bottom shear stress and water column turbulence for benthic-pelagic coupling studies: design and applications. J Exp Mar Biol Ecol 499:35–50CrossRefGoogle Scholar
  77. Présing M, Preston T, Takátsy A, Spróber P, Kovács AW, Vörös L, Kenesi G, Kóbor I (2008) Phytoplankton nitrogen demand and the significance of internal and external nitrogen sources in large shallow lake (Lake Balaton, Hungary). Hydrobiologia 599:95–97.  https://doi.org/10.1007/s10750-007-9191-1 CrossRefGoogle Scholar
  78. Radtke H, Neumann T, Voss M, Fennel W (2012) Modeling pathways of riverine nitrogen and phosphorus in the Baltic Sea. J Geophys Res 117:C09024.  https://doi.org/10.1029/2012JC008119 CrossRefGoogle Scholar
  79. Remekaite-Nikiene N, Lujaniene G, Malejevas V, Bariseviciute R, Zilius M, Vybernaite-Lubiene I, Garnaga-Budre G, Stankevicius A (2017) Assessing nature and dynamics of POM in transitional environment (the Curonian Lagoon, SE Baltic Sea) using a stable isotope approach. Ecol Indic 82:217–226.  https://doi.org/10.1016/j.ecolind.2017.06.035 CrossRefGoogle Scholar
  80. Robson BJ, Bukaveckas PA, Hamiltond DP (2008) Modelling and mass balance assessments of nutrient retention in a seasonally-flowing estuary (Swan River Estuary, Western Australia). Estuar Coast Shelf Sci 76(2):282–292.  https://doi.org/10.1016/j.ecss.2007.07.009 CrossRefGoogle Scholar
  81. Savchuk OP (2005) Resolving the Baltic Sea into seven subbasins: N and P budgets for 1991–1999. J Mar Syst 56(1–2):1–15.  https://doi.org/10.1016/j.jmarsys.2004.08.005 CrossRefGoogle Scholar
  82. Seitzinger SP, Styles R, Boyer EW, Alexander RB, Billen G, Howarth RW, Mayer B, van Breeman N (2002) Nitrogen retention in rivers: model development and application to watersheds in the northeastern USA. Biogeochemistry 57(68):199–237.  https://doi.org/10.1023/A:1015745629794 CrossRefGoogle Scholar
  83. Seitzinger S, Harrison JA, Böhlke JK, Bouwman AF, Lowrance R, Peterson B, Tobias C, Van Drecht G (2006) Denitrification across landscapes and waterscapes: a synthesis. Ecol Appl 16(6):2064–2090CrossRefGoogle Scholar
  84. Silvennoinen H, Hietanen S, Liikanen A, Stange CF, Russow R, Kuparinen J, Martikainen PJ (2007) Denitrification in the river estuaries of the northern Baltic Sea. Ambio 36(2–3):134–140.  https://doi.org/10.1579/0044-7447(2007)36%5b134:DITREO%5d2.0.CO;2 CrossRefGoogle Scholar
  85. Smith VH (2006) Responses of estuarine and coastal marine phytoplankton to nitrogen and phosphorus enrichment. Limnol Oceanogr 51:377–384.  https://doi.org/10.4319/lo.2006.51.1part_2.0377 CrossRefGoogle Scholar
  86. Smith VH, Tilman DG, Nekola JC (1999) Eutrophication: impacts of excess nutrient inputs on freshwater, marine and terrestrial ecosystems. Environ Pollut 100:179–196.  https://doi.org/10.1016/S0269-7491(99)00091-3 CrossRefGoogle Scholar
  87. Smyth AR, Geraldi NR, Piehler MF (2013) Oyster-mediated benthic-pelagic coupling modifies nitrogen pools and processes. Mar Ecol Prog Ser 493:23–30.  https://doi.org/10.3354/meps10516 CrossRefGoogle Scholar
  88. Song K, Burgin AJ (2017) Perpetual phosphorus cycling: eutrophication amplifies biological control on internal phosphorus loading in agricultural reservoirs. Ecosystems 20:1483–1493.  https://doi.org/10.1007/s10021-017-0126-z CrossRefGoogle Scholar
  89. Strickland JDH (1960) Measuring the production of marine phytoplankton. Bull Fish Res Board Can 122:172Google Scholar
  90. Sundbäck K, Linares F, Larson F, Wulff A, Engelsen A (2004) Benthic nitrogen fluxes along a depth gradient in a microtidal fjord: the role of denitrification and microphytobenthos. Limnol Oceanogr 49(4):1095–1107.  https://doi.org/10.4319/lo.2004.49.4.1095 CrossRefGoogle Scholar
  91. Umgiesser G, Zemlys P, Erturk A, Razinkova-Baziukas A, Mežinė J, Ferrarin Ch (2016) Seasonal renewal time variability in the Curonian Lagoon caused by atmospheric and hydrographical forcing. Ocean Sci 12:391–402.  https://doi.org/10.5194/os-12-391-2016 CrossRefGoogle Scholar
  92. Utermöhl H (1958) Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Int Assoc Theor Appl Limnol 9:1–38Google Scholar
  93. Vaitkuviene D, Dagys M (2008) CORINE 2006 land cover, Lithuania. Implementing CLC2006 project in Lithuania, Report. Institute of Ecology of Vilnius University, Vilnius (in Lithuanian) Google Scholar
  94. Valiela I, Collins G, Kremer J, Lajtha K, Geist M, Seely B, Brawley J, Sham CH (1997) Nitrogen loading from coastal watersheds to receiving estuaries: new method and application. Ecol Appl 7:358–380.  https://doi.org/10.1890/1051-0761(1997)007%5b0358:NLFCWT%5d2.0.CO;2 CrossRefGoogle Scholar
  95. Visser PM, Ibelings BM, Bormans M, Huisman J (2016) Artificial mixing to control cyanobacterial blooms: a review. Aquat Ecol 50(3):423–441.  https://doi.org/10.1007/s10452-015-9537-0 CrossRefGoogle Scholar
  96. Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–750Google Scholar
  97. Voss M, Deutsch B, Liskow I, Pastuszak M, Schulte U, Sitek S (2010) Nitrogen retention in the Szczecin lagoon, Baltic Sea. Isot Environ Health Stud 46(3):355–369.  https://doi.org/10.1080/10256016.2010.503895 CrossRefGoogle Scholar
  98. Vybernaite-Lubiene I, Zilius M, Giordani G, Petkuviene J, Vaiciute D, Bukaveckas PA, Bartoli M (2017) Effect of algal blooms on retention of N, Si and P in Europe’s largest coastal lagoon. Estuar Coast Shelf Sci 194:217–228.  https://doi.org/10.1016/j.ecss.2017.06.020 CrossRefGoogle Scholar
  99. Walsby AE (1994) Gas vesicles. Microbiol Rev 58:94–144Google Scholar
  100. Wannicke N, Benavides M, Dalsgaard T, Dippner JW, Montoya JP, Voss M (2018) New perspectives on nitrogen fixation measurements using 15N2 gas. Front Mar Sci 5:120.  https://doi.org/10.3389/fmars.2018.00120 CrossRefGoogle Scholar
  101. Wasmund N, Voss M, Lochte K (2001) Evidence of nitrogen fixation by non-heterocystous cyanobacteria in the Baltic Sea and re-calculation of a budget of nitrogen fixation. Mar Ecol Prog Ser 214:1–14.  https://doi.org/10.3354/meps214001 CrossRefGoogle Scholar
  102. Witek Z, Humborg C, Savchuk O, Grelowski A, Lysiak-Pastuszak E (2003) Nitrogen and phosphorus budgets of the Gulf of Gdansk (Baltic Sea). Estuar Coast Shelf Sci 57(1–2):239–248.  https://doi.org/10.1016/S0272-7714(02)00348-7 CrossRefGoogle Scholar
  103. Wood JD, Bukaveckas PA (2014) Increasing severity of phytoplankton nutrient limitation following reductions in point source inputs to the tidal freshwater segment of the James River Estuary. Estuaries Coasts 37:1188–1201.  https://doi.org/10.1007/s12237-013-9756-3 CrossRefGoogle Scholar
  104. Wood JD, Elliott D, Garman G, Hopler D, Lee W, McIninch S, Porter AJ, Bukaveckas PA (2016) Autochthony, allochthony and the role of consumers in influencing the sensitivity of aquatic systems to nutrient enrichment. Food Webs 7:1–12.  https://doi.org/10.1016/j.fooweb.2016.03.001 CrossRefGoogle Scholar
  105. Zemlys P, Ferrarin Ch, Umgiesser G, Gulbinskas S, Bellafiore D (2013) Investigation of saline water intrusions into the Curonian Lagoon (Lithuania) and two-layer flow in the Klaipėda Strait using finite element hydrodynamic model. Ocean Sci 9(3):573–584.  https://doi.org/10.5194/os-9-573-2013 CrossRefGoogle Scholar
  106. Zilius M (2011) Oxygen and nutrient exchange at the sediment–water interface in the eutrophic boreal lagoon (Baltic Sea). Dissertation, University of KlaipedaGoogle Scholar
  107. Zilius M, Bartoli M, Daunys D, Pilkaityte R, Razinkovas A (2012) Patterns of benthic oxygen uptake in a hypertrophic lagoon: spatial variability and controlling factors. Hydrobiologia 699:85–98.  https://doi.org/10.1007/s10750-012-1155-4 CrossRefGoogle Scholar
  108. Zilius M, Bartoli M, Bresciani M, Katarzyte M, Ruginis T, Petkuviene J, Lubiene I, Giardino C, Bukaveckas PA, de Wit R, Razinkovas-Baziukas A (2014) Feedback mechanisms between cyanobacterial blooms, transient hypoxia, and benthic phosphorus regeneration in shallow coastal environments. Estuaries Coasts 37(3):680–694.  https://doi.org/10.1007/s12237-013-9717-x CrossRefGoogle Scholar
  109. Zilius M, de Wit R, Bartoli M (2016) Response of sedimentary processes to cyanobacteria loading. J Limnol 75(2):236–247.  https://doi.org/10.4081/jlimnol.2015.1296 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • M. Zilius
    • 1
  • I. Vybernaite-Lubiene
    • 1
  • D. Vaiciute
    • 1
  • J. Petkuviene
    • 1
  • P. Zemlys
    • 1
  • I. Liskow
    • 2
  • M. Voss
    • 2
  • M. Bartoli
    • 1
    • 3
  • P. A. Bukaveckas
    • 4
    Email author
  1. 1.Marine Research InstituteKlaipeda UniversityKlaipedaLithuania
  2. 2.Department of Biological OceanographyLeibniz Institute for Baltic Sea ResearchRostockGermany
  3. 3.Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly
  4. 4.Department of Biology and Center for Environmental StudiesVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations