Advertisement

Quantifying the indirect effects of nitrogen deposition on grassland litter chemical traits

  • Shuang-Li Hou
  • Grégoire T. Freschet
  • Jun-Jie Yang
  • Yun-Hai Zhang
  • Jiang-Xia Yin
  • Yan-Yu Hu
  • Hai-Wei Wei
  • Xing-Guo Han
  • Xiao-Tao Lü
Article
  • 44 Downloads

Abstract

Litter chemical traits are one of the dominant controls on litter decomposition. Increasing atmospheric nitrogen (N) deposition is expected to alter litter chemical traits at the community level in both direct (altering intraspecific chemistry) and indirect ways (changing species abundance and composition). Compared to intraspecific changes, the role of changes in species composition in driving the responses of litter chemical traits to N enrichment has been seldom quantitatively addressed. We quantified the relative contribution of intraspecific changes versus changes in community composition on litter traits and how this would be influenced by the magnitude of N deposition by taking advantage of a long-term field N addition experiment in a semi-arid grassland with a wide range of N addition rates. Nitrogen deposition altered plant species abundance by facilitating the dominance of one species with a nutrient acquisitive strategy, producing higher quality litter and being more responsive to N addition at the intraspecific level. Overall, changes in species composition, intraspecific changes and their interaction all led to higher litter quality (higher N and lower lignin, cellulose and hemicellulose concentrations) under N deposition treatments. The relative contribution of species composition on the responses of litter chemical traits to N deposition also increased with N addition rate, ranging from 5 to 40% for litter N, and from 2 to ~ 30% for the three structural carbon components. Our results demonstrate the positive impacts of increasing N deposition on litter quality through changing intraspecific C and N chemistry and species turnover, which has potential consequences for litter decomposition and nutrient cycling in ecosystems. Further, we highlight the important contribution of shifts in species abundance to the plant-mediated biogeochemical responses to N deposition.

Keywords

Nitrogen deposition Litter chemistry Species turnover Intraspecific variation Lignin Litter decomposition Community composition Nutrient cycling Semi-arid grassland 

Notes

Acknowledgements

We acknowledge the staff of the Inner Mongolia Grassland Ecosystem Research Station (IMGERS) for supporting this study. We thank Chenxi Tian, Sihan Liu, Yi Wu, and Yue Sun for assistance with laboratory work. We appreciate comments and suggestions from Dr. Scott Bridgham and anonymous reviewers, which help us improve the quality of this work. This work was supported by National Natural Science Foundation of China (31770503 and 31470505), the National Basic Research Program of China (2016YFC0500601 and 2015CB150802), Strategic Priority Research Program of the Chinese Academy of Sciences (XDB15010403), the Key Research Program from CAS (QYZDB-SSW-DQC006), and Youth Innovation Promotion Association CAS (2014174). Authors declare no conflict of interests.

Author contributions

XTL and XGH designed the research; SLH, JXY, YHZ, JXY, YYH, and HWW collected and analyzed the data; SLH, XTL, and GTF wrote the manuscript; all authors contributed critically to the drafts and gave final approval for publication.

References

  1. Aerts R, de Caluwe H, Beltman B (2003) Plant community mediated vs. nutritional controls on litter decomposition rates in grasslands. Ecology 84(12):3198–3208CrossRefGoogle Scholar
  2. Albert CH, Grassein F, Schurr FM, Vieilledent G, Violle C (2011) When and how should intraspecific variability be considered in trait-based plant ecology? Perspect Plant Ecol 13(3):217–225CrossRefGoogle Scholar
  3. Bai Y, Wu J, Clark CM, Naeem S, Pan Q, Huang J, L Zhang, Han X (2010) Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from inner Mongolia Grasslands. Glob Chang Biol 16(2):358–372CrossRefGoogle Scholar
  4. Bardgett RD (2017) Plant trait-based approaches for interrogating belowground function. Biol Environ 117B(1):1–13Google Scholar
  5. Berg B (2014) Decomposition patterns for foliar litter—a theory for influencing factors. Soil Biol Biochem 78:222–232CrossRefGoogle Scholar
  6. Berg B, Matzner E (1997) Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems. Environ Rev 5(1):1–25CrossRefGoogle Scholar
  7. Berg B, Davey MP, De Marco A, Emmett B, Faituri M, Hobbie SE, Johansson MB, Liu C, McClaugherty C, Norell L, Rutigliano FA, Vesterdal L, De Santo AV (2010) Factors influencing limit values for pine needle litter decomposition: a synthesis for boreal and temperate pine forest systems. Biogeochemistry 100(1–3):57–73CrossRefGoogle Scholar
  8. Bobbink R (1991) Effects of nutrient enrichment in Dutch Chalk grassland. J Appl Ecol 28(1):28–41CrossRefGoogle Scholar
  9. Booker FL, Anttonen S, Heagle AS (1996) Catechin proanthocyanidin and lignin contents of loblolly pine (Pinus taeda) needles after chronic exposure to ozone. New Phytol 132(3):483–492CrossRefGoogle Scholar
  10. Chapin FS III (1980) The mineral nutrition of wild plants. Annu Rev Ecol Syst 11:233–260CrossRefGoogle Scholar
  11. Chen SP, Bai YF, Zhang HX, Han XG (2005) Comparing physiological responses of two dominant grass species to nitrogen addition in Xilin River Basin of China. Environ Exp Bot 53(1):65–75CrossRefGoogle Scholar
  12. Clark CM, Tilman D (2008) Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature 451:712–715CrossRefGoogle Scholar
  13. Conant RT, Ryan MG, Ågren GI, Birge HE, Davidson EA, Eliasson PE, Evans SE, Frey SD, Giardina CP, Hopkins FM, Hyvönen R, Kirschbaum MUF, Lavallee JM, Leifeld J, Parton WJ, Megan Steinweg J, Wallenstein MD, Martin Wetterstedt JA, Bradford MA (2011) Temperature and soil organic matter decomposition rates—synthesis of current knowledge and a way forward. Glob Chang Biol 17(11):3392–3404CrossRefGoogle Scholar
  14. Cornelissen JH, Van Bodegom PM, Aerts R, Callaghan TV, Van Logtestijn RS, Alatalo J, Chapin FS, Gerdol R, Gudmundsson J, Gwynn-Jones D, Hartley AE, Hik DS, Hofgaard A, Jónsdóttir IS, Karlsson S, Klein JA, Laundre J, Magnusson B, Michelsen A, Molau U, Onipchenko VG, Quested HM, Sandvik SM, Schmidt IK, Shaver GR, Solheim B, Soudzilovskaia NA, Stenström A, Tolvanen A, Totland Ø, Wada N, Welker JM, Zhao X, Team MOM (2007) Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes. Ecol Lett 10(7):619–627CrossRefGoogle Scholar
  15. Cornwell WK, Cornelissen JH, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Pérez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allison SD, Van Bodegom P, Brovkin V, Chatain A, Callaghan TV, Díaz S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Victoria Vaieretti M, Westoby M (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11(10):1065–1071CrossRefGoogle Scholar
  16. Cotrufo MF, Inescon P (1996) Elevated CO2 reduces field decomposition rates of Betula pendula Roth leaf litter. Oecologia 106(4):525–530CrossRefGoogle Scholar
  17. De Long JR, Sundqvist MK, Gundale MJ, Giesler R, Wardle DA (2016) Effects of elevation and nitrogen and phosphorus fertilization on plant defence compounds in subarctic tundra heath vegetation. Funct Ecol 30(2):314–325CrossRefGoogle Scholar
  18. Dentener F, Drevet J, Lamarque JF, Bey I, Eickhout B, Fiore AM, Hauglustaine D, Horowitz LW, Krol M, Kulshrestha UC, Lawrence M, Galy-Lacaux C, Rast S, Shindell D, Stevenson D, Van Noije T, Atherton C, Bell N, Bergman D, Butler T, Cofala J, Collins B, Doherty R, Ellingsen K, Galloway J, Gauss M, Montanaro V, Müller JF, Pitari G, Rodriguez J, Sanderson M, Solmon F, Strahan S, Schultz M, Sudo K, Szopa S, Wild O (2006) Nitrogen and sulfur deposition on regional and global scales: a multimodel evaluation. Global Biogeochem Cycle 20(4):3CrossRefGoogle Scholar
  19. Duprè C, Stevens CJ, Ranke T, Bleeker A, Peppler-Lisbach C, Gowing DJG, Dise NB, Dorland E, Bobbink R, Diekmann M (2010) Changes in species richness and composition in European acidic grasslands over the past 70 years: the contribution of cumulative atmospheric nitrogen deposition. Glob Chang Biol 16(1):344–357CrossRefGoogle Scholar
  20. Fanin N, Hättenschwiler S, Barantal S, Schimann H, Fromin N (2011) Does variability in litter quality determine soil microbial respiration in an Amazonian rainforest? Soil Biol Biochem 43(5):1014–1022CrossRefGoogle Scholar
  21. Fioretto A, Di Nardo C, Papa S, Fuggi A (2005) Lignin and cellulose degradation and nitrogen dynamics during decomposition of three leaf litter species in a Mediterranean ecosystem. Soil Biol Biochem 37(6):1083–1091CrossRefGoogle Scholar
  22. Freschet GT, Aerts R, Cornelissen JHC (2012) Multiple mechanisms for trait effects on litter decomposition: moving beyond home-field advantage with a new hypothesis. J Ecol 100(3):619–630CrossRefGoogle Scholar
  23. Garnier E, Cortez J, Billès G, Navas M, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A, Neill C, Toussaint J-P (2004) Plant functional markers capture ecosystem properties during secondary succession. Ecology 85(9):2630–2637CrossRefGoogle Scholar
  24. Grime JP (1998) Benefits of plant diversity to ecosystems: immediate filter and founder effects. J Ecol 86(6):902–910CrossRefGoogle Scholar
  25. Hättenschwiler S, Jørgensen HB (2010) Carbon quality rather than stoichiometry controls litter decomposition in a tropical rain forest. J Ecol 98(4):754–763CrossRefGoogle Scholar
  26. Hättenschwiler S, Vitousek PM (2000) The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends Ecol Evol 15(6):238–243CrossRefGoogle Scholar
  27. Hector A, Beale AJ, Minns A, Otway SJ, Lawton JH (2000) Consequences of the reduction of plant diversity for litter decomposition: effects through litter quality and microenvironment. Oikos 90(2):357–371CrossRefGoogle Scholar
  28. Henry HA, Cleland EE, Field CB, Vitousek PM (2005) Interactive effects of elevated CO2, N deposition and climate change on plant litter quality in a California annual grassland. Oecologia 142(3):465–473CrossRefGoogle Scholar
  29. Hobbie SE (2000) Interactions between litter lignin and soil nitrogen availability during leaf litter decomposition in a Hawaiian montane forest. Ecosystems 3(5):484–494CrossRefGoogle Scholar
  30. Hobbie SE (2015) Plant species effects on nutrient cycling: revisiting litter feedbacks. Trends Ecol Evol 30(6):357–363CrossRefGoogle Scholar
  31. Jia Y, Yu G, He N, Zhan X, Fang H, Sheng W, Zuo Y, Zhang D, Wang Q (2014) Spatial and decadal variations in inorganic nitrogen wet deposition in China induced by human activity. Sci Rep 4:3763CrossRefGoogle Scholar
  32. Jones CG, Hartley SE (1999) A protein competition model of phenolic allocation. Oikos 86(1):27–44CrossRefGoogle Scholar
  33. Kichenin E, Wardle DA, Peltzer DA, Morse CW, Freschet GT, Kitajima K (2013) Contrasting effects of plant inter- and intraspecific variation on community-level trait measures along an environmental gradient. Funct Ecol 27(5):1254–1261CrossRefGoogle Scholar
  34. Knorr M, Frey SD, Curtis PS (2005) Nitrogen additions and litter decomposition—a meta-analysis. Ecology 86(12):3252–3257CrossRefGoogle Scholar
  35. Kobe RK, Lepcyk CA, Iyer M (2005) Resorption efficiency decreases with increasing green leaf nutrient in a global data set. Ecology 86(10):2780–2792CrossRefGoogle Scholar
  36. Li JZ, Lin S, Taube F, Pan QM, Dittert K (2011) Above and belowground net primary productivity of grassland influenced by supplemental water and nitrogen in Inner Mongolia. Plant Soil 340(1–2):253–264CrossRefGoogle Scholar
  37. Liu J, Wu N, Wang H, Sun J, Peng B, Jiang P, Bai E (2016) Nitrogen addition affects chemical composition of plant tissues litter and soil organic matter. Ecology 97(7):1796–1806CrossRefGoogle Scholar
  38. Lü XT, Freschet GT, Flynn DFB, Han XG (2012) Plasticity in leaf and stem nutrient resorption proficiency potentially reinforces plant-soil feedbacks and microscale heterogeneity in a semi-arid grassland. J Ecol 100(1):144–150CrossRefGoogle Scholar
  39. Melillo JM, Aber JD, Muratore JF (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63(3):621–626CrossRefGoogle Scholar
  40. Schuster MJ, Smith NG, Dukes JS (2016) Responses of aboveground C and N pools to rainfall variability and nitrogen deposition are mediated by seasonal precipitation and plant community dynamics. Biogeochemistry 129(3):389–400CrossRefGoogle Scholar
  41. Siefert A, Violle C, Chalmandrier L, Albert CH, Taudiere A, Fajardo A, Aarssen LW, Baraloto C, Carlucci MB, Cianciaruso MV, Dantas VL, de Bello F, Duarte LDS, Fonseca CR, Freschet GT, Gaucherand S, Nicolas Gross N, Hikosaka K, Jackson B, Jung V, Kamiyama C, Katabuchi M, Kembel SW, Kichenin E, Kraft NJB, Lagerström A, Le Bagousse-Pinguet Y, Li Y, Mason N, Messier J, Nakashizuka T, Overton JM, Peltzer DA, Pérez-Ramos IM, Pillar VD, Prentice HC, Richardson S, Sasaki T, Schamp BS, Schöb C, Shipley B, Sundqvist M, Sykes MT, Vandewalle M, Wardle DA (2015) A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecol Lett 18(12):1406–1419CrossRefGoogle Scholar
  42. Sjöberg G, Nilsson SI, Persson T, Karlsson P (2004) Degradation of hemicellulose cellulose and lignin in decomposing spruce needle litter in relation to N. Soil Biol Biochem 36(11):1761–1768CrossRefGoogle Scholar
  43. Smith MD, Knapp AK, Collins SL (2009) A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change. Ecology 90(12):3279–3289CrossRefGoogle Scholar
  44. Taylor KACC (1995) A modification of the phenol sulfuric-acid assay for total carbohydrates giving more comparable absorbances. Appl Biochem Biotech 53(3):207–214CrossRefGoogle Scholar
  45. Vergutz L, Manzoni S, Porporato A, Novais RF, Jackson RB (2012) Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecol Monogr 82(2):205–220CrossRefGoogle Scholar
  46. Waldrop MP, Zak DR, Sinsabaugh RL, Gallo M, Lauber C (2004) Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity. Ecol Appl 14(4):1172–1177CrossRefGoogle Scholar
  47. Wright IJ, Westoby M (2003) Nutrient concentration resorption and life span: leaf traits of Australian sclerophyll species. Funct Ecol 17(1):10–19CrossRefGoogle Scholar
  48. Yang H, Li Y, Wu M, Zhang Z, Li L, Wan S (2011) Plant community responses to nitrogen addition and increased precipitation: the importance of water availability and species traits. Glob Chang Biol 17(9):2936–2944CrossRefGoogle Scholar
  49. Zhang Y, Han X, He N, Long M, Huang J, Zhang G, Wang Q, Han X (2014a) Increase in ammonia volatilization from soil in response to N deposition in Inner Mongolia grasslands. Atmos Environ 84:156–162CrossRefGoogle Scholar
  50. Zhang Y, Lu X, Isbell F, Stevens C, Han X, He N, Zhang G, Yu Q, Huang J, Han X (2014b) Rapid plant species loss at high rates and at low frequency of N addition in temperate steppe. Glob Chang Biol 20(11):3520–3529CrossRefGoogle Scholar
  51. Zhang W, Chao L, Yang Q, Wang Q, Fang Y, Wang S (2016) Litter quality mediated nitrogen effect on plant litter decomposition regardless of soil fauna presence. Ecology 97(10):2834–2843CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Erguna Forest Steppe Ecotone Research Station, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied EcologyChinese Academy of SciencesShenyangChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Centre d’Ecologie Fonctionnelle et Evolutive, UMR 5175 (CNRS – Université de Montpellier – Université Paul-Valéry, Montpellier – EPHE – IRD)MontpellierFrance
  4. 4.State Key Laboratory of Vegetation of Environmental Change, Institute of BotanyChinese Academy of SciencesBeijingChina
  5. 5.School of Life ScienceLiaoning UniversityShenyangChina

Personalised recommendations