Skip to main content
Log in

Carbon biogeochemistry of a flooded Pantanal forest over three annual flood cycles

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

The Pantanal is the largest wetland in the world and yet little is known about the variability in carbon (C) dynamics across its flood seasons. We examined the effect of inundation on the C cycle in the 2013–2015 flood cycles illustrated by dissolved CO2, CH4, organic C (DOC) concentration measurements, and optical properties of dissolved organic matter (DOM) evaluated by absorbance and fluorescence spectroscopy with parallel factor analysis (PARAFAC). During the 2015 flood cycle, pCO2 varied between 5973 and 14,292 μatm, with pCH4 concentrations ranging between 2956 and 51,675 μatm respectively, with high temporal variability for both gases. The supersaturation of CO2 and CH4 in relation to the atmospheric equilibrium caused the system to behave as a net source of CO2 and CH4 to the atmosphere with evasion rates of 320 mg CO2 m−2 d−1 and 20 mg CH4 m−2 d−1, respectively. Mean DOC concentration was 7.0 ± 0.4 mg L−1 and did not differ between flood cycles. Higher concentrations of DOC were measured at the start (rising floodwaters) and at the end (receding floodwaters) of flood cycles, while lower DOC concentrations were observed during the peak flood. The PARAFAC analysis indicated the presence of five DOM components: humic (C1 and C2) and fulvic type material (C3) showed the highest relative abundance (68.5% of the total PARAFAC component fluorescence), as well as protein-like material (C4 and C5) derived from microorganisms. Our measured diffusive flux levels were below the range of emissions found for wetlands and floodplains for CO2, but were slightly higher for CH4 relative to other studies in lakes and seasonally flooded areas of the Pantanal. The large variations in concentrations of CO2, CH4 and DOC and the optical properties of DOM during the course of each flood cycle suggest a close relationship between carbon and water cycles in this tropical wetland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alho CJR, Sabino J (2012) Seasonal pantanal flood pulse: implications for biodiversity conservation—A review. Oecologia Australis 16(4):958–978

    Article  Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome 300(9):D05109

    Google Scholar 

  • Amaral JHF, Suhett AL, MeloS Farjalla VF (2013) Seasonal variation and interaction of photodegradation and microbial metabolism of DOC in black water Amazonian ecosystems. Aquat Microb Ecol 70(2):157–168

    Article  Google Scholar 

  • Amon R, Benner R (1996) Photochemical and microbial consumption of dissolved organic carbon and dissolved oxygen in the Amazon River system. Geochim Cosmochim Acta 60(10):1783–1792

    Article  Google Scholar 

  • Assine ML, Macedo HA, Stevaux JC et al (2015) Avulsive rivers in the hydrology of the pantanal wetland. In: Bergier I, Assine ML (ed) Dynamics of the Pantanal Wetland in South America. Springer, Berlin, pp 83–110

  • Aufdenkampe AK, Mayorga E, Raymond PA et al (2011) Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Front Ecol Environ 9(1):53–60

    Article  Google Scholar 

  • Ballester MVR, Santos JEd (2001) Biogenic gases in tropical floodplain river. Braz Arch Biol Technol 44(2):141–147

    Article  Google Scholar 

  • Barbiero L, Neto MS, Braz RR et al (2017) Biogeochemical diversity and hot moments of GHG emissions from shallow alkaline lakes in the Pantanal of Nhecolândia, Brazil. Biogeosci Discuss. https://doi.org/10.5194/bg-2017-108

  • Bartlett KB, Crill PM, Sebacher DI et al (1988) Methane flux from the central Amazonian floodplain. J Geophys Res 93(D2):1571–1582

    Article  Google Scholar 

  • Bass A, O’Grady D, Leblanc M, Tweed S, Nelson P, Bird M (2014) Carbon dioxide and methane emissions from a wet-dry tropical floodplain in Northern Australia. Wetlands 34(3):619–627

    Article  Google Scholar 

  • Bastviken D, Cole JJ, Pace ML et al (2008) Fates of methane from different lake habitats: connecting whole-lake budgets and CH4 emissions. J Geophys Res https://doi.org/10.1029/2007jg000608

  • Bastviken D, Santoro AL, Marotta H et al (2010) Methane emissions from Pantanal, South America, during the low water season: toward more comprehensive sampling. Environ Sci Technol 44(14):5450–5455

    Article  Google Scholar 

  • Baulch HM, Dillon PJ, Maranger R et al (2011) Diffusive and ebullitive transport of methane and nitrous oxide from streams: are bubble-mediated fluxes important? J Geophys Res Biogeosci 116:G04028. https://doi.org/10.1029/2011JG001656

    Article  Google Scholar 

  • Belger L, Forsberg BR, Melack JM (2011) Carbon dioxide and methane emissions from interfluvial wetlands in the upper Negro River basin. Brazil. Biogeochemistry 105(1–3):171–183

    Article  Google Scholar 

  • Bergier I, Silva AP, Monteiro H et al (2015) Methane and carbon dioxide dynamics in the Paraguay River floodplain (pantanal) in episodic anoxia events. In: Bergier I, Assine ML (ed) Dynamics of the Pantanal Wetland in South America. Springer, Berlin, pp 163–178

  • Billett M, Moore T (2008) Supersaturation and evasion of CO2 and CH4 in surface waters at Mer Bleue peatland, Canada. Hydrol Process 22:2044–2054

    Article  Google Scholar 

  • Borges AV, Abril G, Darchambeau F et al (2015) Divergent biophysical controls of aquatic CO2 and CH4 in the World’s two largest rivers. Sci Rep. https://doi.org/10.1038/srep15614

    Google Scholar 

  • Calheiros DF (2003) Influência do pulso de inundação na composição isotópica (δ13C e δ15 N) das fontes primárias de energia na planicie de inundação do rio Paraguai (Pantanal–MS). Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, São Paulo

  • Calheiros DF, Ferreira CJA (1997) Alterações limnológicas no rio Paraguai (“dequada”) e o fenômeno natural de mortandade de peixes no Pantanal Mato-Grossense–MS. Boletim de pesquisa 7:48

    Google Scholar 

  • Carvalho PV (2013) Estudo de fluxo de CO2 e do estoque de carbono do solo em área de interflúvio no Pantanal município de Poconé Mato Grosso. Dissertation, Universidade Federal de Mato Grosso

  • Cawley KM, Wolski P, Mladenov N et al (2012) Dissolved organic matter biogeochemistry along a transect of the Okavango Delta, Botswana. Wetlands 32:475–486

    Article  Google Scholar 

  • Coble PG (1996) Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Mar Chem 51:325–346

    Article  Google Scholar 

  • Cory RM, McKnight DM (2005) Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Environ Sci Technol 39:8142–8149

    Article  Google Scholar 

  • Cory RM, Harrold KH, Neilson BT, Kling GW (2015) Controls on dissolved organic matter (DOM) degradation in a headwater stream: the influence of photochemical and hydrological conditions in determining light-limitation or substrate-limitation of photo-degradation. Biogeosciences 12(22):6669–6685

    Article  Google Scholar 

  • Couto EG, Jacomine PKT, Nunes da Cunha C et al (2002) Guia da excursão técnica da XIV RBMCSA. Editora UFMT, Cuiaba-MT

    Google Scholar 

  • Crawford JT, Striegl RG, Wickland KP et al (2013) Emissions of carbon dioxide and methane from a headwater stream network of interior Alaska. J Geophys Res 118:482–494. https://doi.org/10.1002/jgrg.20034

  • Crawford JT, Stanley EH, Spawn SA et al (2014) Ebullitive methane emissions from oxygenated wetland streams. Glob Change Biol 20:3408–3422

    Article  Google Scholar 

  • Crusius J, Wanninkhof R (2003) Gas transfer velocities measured at low wind speed over a lake. Limnology and Oceanography 48(3):1010–1017

    Article  Google Scholar 

  • Dalmagro HJ, Lathuillière MJ, Vourlitis GL et al (2016) Physiological responses to extreme hydrological events in the Pantanal wetland: heterogeneity of a plant community containing super-dominant species. J Veg Sci. https://doi.org/10.1111/jvs.12379

    Google Scholar 

  • Dalmagro HJ, Johnson MS, de Musis CR et al (2017) Spatial patterns of DOC concentration and DOM optical properties in a Brazilian tropical river-wetland system. J Geophys Res https://doi.org/10.1002/2017jg003797

  • Devol AH, Richey JE, Forsberg BR et al (1990) Seasonal dynamics in methane emissions from the Amazon River floodplain to the troposphere. J Geophys Res 95(D10):16417–16426

    Article  Google Scholar 

  • Devol AH, Richey JE, Forsberg BR, Martinelli LA (1994) Environmental methane in the Amazon River floodplain. In:MitschWJ (ed) Global wetlands: old world and new. Elsevier Science, Amsterdam, pp 151–165

  • Fasching C, Behounek B, Singer GA et al (2014) Microbial degradation of terrigenous dissolved organic matter and potential consequences for carbon cycling in brown-water streams. Sci Rep 4:4981

    Article  Google Scholar 

  • Girard P, Fantin-Cruz I, De Oliveira SML et al (2010) Small-scale spatial variation of inundation dynamics in a floodplain of the Pantanal (Brazil). Hydrobiologia 638:223–233

    Article  Google Scholar 

  • Gonçalves H, Mercante M, Santos E (2011) Hydrological cycle. Braz J Biol 71:241–253

    Article  Google Scholar 

  • Gondwe MJ, Masamba WR (2014) Spatial and temporal dynamics of diffusive methane emissions in the Okavango Delta, northern Botswana, Africa. Wetl Ecol Manag 22:63–78

    Article  Google Scholar 

  • Gonsior M, Valle J, Schmitt-Kopplin P et al (2016) Chemodiversity of dissolved organic matter in the Amazon Basin. Biogeosciences 13:4279–4290

    Article  Google Scholar 

  • Hamilton SK (1994) Aquatic biogeochemistry of the Orinoco River floodplain (Venezuela) and the Pantanal wetland (Brazil). Doctoral dissertation, University of California

  • Hamilton SK (2010) Biogeochemical implications of climate change for tropical rivers and floodplains. Hydrobiologia 657:19–35

    Article  Google Scholar 

  • Hamilton S, Sippel S, Melack J (1995) Oxygen depletion and carbon dioxide and methane production in waters of the Pantanal wetland of Brazil. Biogeochemistry 30:115–141

    Article  Google Scholar 

  • Hansen AM, Kraus TE, Pellerin BA et al (2016) Optical properties of dissolved organic matter (DOM): effects of biological and photolytic degradation. Limnol Oceanogr 61:1015–1032

    Article  Google Scholar 

  • Hanson PC, Hamilton DP, Stanley EH et al (2011) Fate of allochthonous dissolved organic carbon in lakes: a quantitative approach. PLoS ONE 6:e21884

    Article  Google Scholar 

  • Helms JR, Stubbins A, Ritchie JD et al (2008) Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol Oceanogr 53:955–969

    Article  Google Scholar 

  • Hintze J (2008) NCSS and PASS. Number cruncher statistical systems, Kaysville

    Google Scholar 

  • Huguet A, Vacher L, Relexans S et al (2009) Properties of fluorescent dissolved organic matter in the Gironde Estuary. Org Geochem 40:706–719

    Article  Google Scholar 

  • Jaffé R, McKnight D, Maie N et al (2008) Spatial and temporal variations in DOM composition in ecosystems: The importance of long term monitoring of optical properties. J Geophys Res. https://doi.org/10.1029/2008jg000683

  • Johnson MS, Lehmann J, Riha SJ et al (2008) CO2 efflux from Amazonian headwater streams represents a significant fate for deep soil respiration. Geophys Res Lett. https://doi.org/10.1029/2008gl034619

  • Johnson MS, Couto EG, Pinto OB Jr et al (2013) Soil CO2 dynamics in a tree island soil of the Pantanal: the role of soil water potential. PLoS ONE 8:e64874

    Article  Google Scholar 

  • Junk WJ (2013) Current state of knowledge regarding South America wetlands and their future under global climate change. Aquat Sci 75:113–131

    Article  Google Scholar 

  • Köhler SJ, Kothawala D, Futter MN et al (2013) In-lake processes offset increased terrestrial inputs of dissolved organic carbon and color to lakes. PLoS ONE 8:e70598

    Article  Google Scholar 

  • Lambert T, Teodoru CR, Nyoni FC et al (2016) Along-stream transport and transformation of dissolved organic matter in a large tropical river. Biogeosciences 13:2727

    Article  Google Scholar 

  • Lathuillière MJ, Pinto Jr OB, Johnson MS et al (2017) Soil CO2 concentrations and efflux dynamics of a tree island in the Pantanal wetland. J Geophys Res. https://doi.org/10.1002/2017jg003877

  • Lawaetz AJ, Stedmon CA (2009) Fluorescence intensity calibration using the Raman scatter peak of water. Appl Spectrosc 63:936–940

    Article  Google Scholar 

  • Liang L, Singer PC (2003) Factors influencing the formation and relative distribution of haloacetic acids and trihalomethanes in drinking water. Environ Sci Technol 37:2920–2928

    Article  Google Scholar 

  • MacIntyre S, Wanninkhof R, Chanton J (1995) Trace gas exchange across the air-water interface in freshwater and coastal marine environments. In: Matson PA, Harriss RC. (ed) Biogenic trace gases: measuring emissions from soil and water. Wiley-Blackwell, New York, pp 52–97

  • MacIntyre S, Jonsson A, Jansson M, Aberg J, Turney DE, Miller SD (2010) Buoyancy flux, turbulence, and the gas transfer coefficient in a stratified lake. Geophys Res Lett 37:L24604

    Article  Google Scholar 

  • Mann PJ, Spencer RG, Dinga BJ et al (2014) The biogeochemistry of carbon across a gradient of streams and rivers within the Congo Basin. J Geophys Res 119:687–702

    Article  Google Scholar 

  • Marani L, Alvala P (2007) Methane emissions from lakes and floodplains in Pantanal, Brazil. Atmos Environ 41:1627–1633

    Article  Google Scholar 

  • Marín-Spiotta E, Gruley K, Crawford J et al (2014) Paradigm shifts in soil organic matter research affect interpretations of aquatic carbon cycling: transcending disciplinary and ecosystem boundaries. Biogeochemistry 117:279–297

    Article  Google Scholar 

  • Mariot M, Dudal Y, Furian S et al (2007) Dissolved organic matter fluorescence as a water-flow tracer in the tropical wetland of Pantanal of Nhecolândia, Brazil. Sci Total Environ 388:84–193

    Article  Google Scholar 

  • Matthews CJ, St. Louis VL, Hesslein RH (2003) Comparison of three techniques used to measure diffusive gas exchange from sheltered aquatic surfaces. Environ Sci Technol 37(4):772–780

  • Mayorga E, Aufdenkampe AK, Masiello CA et al (2005) Young organic matter as a source of carbon dioxide outgassing from Amazonian rivers. Nature 436:538–541

    Article  Google Scholar 

  • McKnight DM, Boyer EW, Westerhoff PK et al (2001) Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol Oceanogr 46:38–48

    Article  Google Scholar 

  • Melack J (2016) Aquatic ecosystems. In: Nagy L, Forsberg BR, Artaxo P (eds) The Large-scale biosphere atmosphere programme in Amazonia. Springer, Berlin

    Google Scholar 

  • Melack JM, Engle DL (2009) An organic carbon budget for an Amazon floodplain lake. Verh Int Verein Limnol 30:1179–1182

    Google Scholar 

  • Melack JM, Hess LL, Gastil M et al (2004) Regionalization of methane emissions in the Amazon Basin with microwave remote sensing. Glob Change Biol 10(5):530–544

    Article  Google Scholar 

  • Messias IAM, Couto EG, Amorim RSS et al (2013) Monitoramento contínuo do potencial redox e de variáveis complementares em ambiente hipersazonal no Pantanal norte. Revista Brasileira de Ciências do Solo 37:632–639

    Article  Google Scholar 

  • Mladenov ND, McKnight M, Macko SA et al (2007) Chemical characterization of DOM in channels of a seasonal wetland. Aquat Sci Res Across Bound 69(4):456–471

    Article  Google Scholar 

  • Moran MA, Zepp RG (1997) Invited Review Role of photoreactions in the formation of biologically labile compounds from dissolved organic matter. Limnol Oceanogr 42(6):1307–1316

    Article  Google Scholar 

  • Murphy KR, Ruiz GM, Dunsmuir WT et al (2006) Optimized parameters for fluorescence-based verification of ballast water exchange by ships. Environ Sci Technol 40:2357–2362

    Article  Google Scholar 

  • Murphy KR, Stedmon CA, Graeber D, Bro R (2013) Fluorescence spectroscopy and multi-way techniques. PARAFAC. Anal Methods 5(23):6557–6566

    Article  Google Scholar 

  • Ohno T (2002) Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter. Environ Sci Technol 36(4):742–746

    Article  Google Scholar 

  • Ortiz AC, Ashton A, Nepf H (2013) Mean and turbulent velocity fields near rigid and flexible plants and the implications for deposition. J Geophys Res Earth Surf 118:2585–2599

    Article  Google Scholar 

  • Osburn CL, Stedmon CA (2011) Linking the chemical and optical properties of dissolved organic matter in the Baltic-North Sea transition zone to differentiate three allochthonous inputs. Mar Chem 126:281–294

    Article  Google Scholar 

  • Osburn CL, Handsel LT, Peierls BL et al (2016) Predicting Sources of Dissolved Organic Nitrogen to an Estuary from an Agro-Urban Coastal Watershed. Environ Sci Technol 50:8473–8484

    Article  Google Scholar 

  • Pabich WJ, Valiela I, Hemond HF (2001) Relationship between DOC concentration and vadose zone thickness and depth below water table in groundwater of Cape Cod, USA. Biogeochemistry 55:247–268

    Article  Google Scholar 

  • Padovani CRP (2010) Dinâmica espaço-temporal das inundações do Pantanal. Doctoral dissertation. Universidade de São Paulo

  • Parlanti E, Wörz K, Geoffroy L, Lamotte M (2000) Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs. Org Geochem 31:1765–1781

  • Pelletier L, Strachan IB, Garneau M, Roulet NT (2014) Carbon release from boreal peatland open water pools: implication for the contemporary C exchange. J Geophys Res 119:207–222

    Article  Google Scholar 

  • R Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria

    Google Scholar 

  • Raymond PA, Zappa CJ, Butman D, Bott TL et al (2012) Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers. Limnol and Oceanogr 2:41–53

    Article  Google Scholar 

  • Raymond PA, Hartmann J, Lauerwald R et al (2013) Global carbon dioxide emissions from inland waters. Nature 503:355–359

    Article  Google Scholar 

  • Reddy KR, DeLaune RD (2008) Biogeochemistry of wetlands: science and applications. CRC Press, Boca Raton, pp 111–184

    Book  Google Scholar 

  • Scofield V, Melack JM, Barbosa PM, Amaral JHF, Forsberg BR, Farjalla VF (2016) Carbon dioxide outgassing from Amazonian aquatic ecosystems in the Negro River basin. Biogeochemistry 129:77–91

    Article  Google Scholar 

  • Singh S, D’Sa EJ, Swenson EM (2010) Chromophoric dissolved organic matter (CDOM) variability in Barataria Basin using excitation–emission matrix (EEM) fluorescence and parallel factor analysis (PARAFAC). Sci Total Environ 408(16):3211–3222

    Article  Google Scholar 

  • Singh S, Inamdar S, Scott D (2013) Comparison of two PARAFAC models of dissolved organic matter fluorescence for a mid-Atlantic forested watershed in the USA. J Ecosyst 1-16. https://doi.org/10.1155/2013/532424

  • Smith LK, Lewis WM, Chanton JP et al (2000) Methane emissions from the Orinoco River floodplain, Venezuela. Biogeochemistry 51:113–140

    Article  Google Scholar 

  • Spencer RG, Butler KD, Aiken GR (2012) Dissolved organic carbon and chromophoric dissolved organic matter properties of rivers in the USA. J Geophys Res 117:G03001. https://doi.org/10.1029/2011JG001928

    Article  Google Scholar 

  • Stanley EH, Casson NJ, Christel ST et al (2016) The ecology of methane in streams and rivers: patterns, controls, and global significance. Ecol Monogr 86(2):146–171

    Article  Google Scholar 

  • Stedmon CA, Bro R (2008) Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial. Limnol Oceanogr 6:572–579

    Article  Google Scholar 

  • Stedmon CA, Markager S (2005) Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis. Limnol Oceanogr 50:686–697

    Article  Google Scholar 

  • Stedmon CA, Markager S, Bro R (2003) Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Mar Chem 82:239–254

    Article  Google Scholar 

  • Stedmon CA, Thomas DN, Granskog M et al (2007) Characteristics of dissolved organic matter in Baltic coastal sea ice: allochthonous or autochthonous origins? Environ Sci Technol 41:7273–7279

    Article  Google Scholar 

  • Teodoru CR, Nyoni FC, Borges A et al (2015) Dynamics of greenhouse gases (CO2, CH4, N2O) along the Zambezi River and major tributaries, and their importance in the riverine carbon budget. Biogeosciences 12(8):2431–2453

    Article  Google Scholar 

  • Vepraskas MJ, Faulkner S (2001) Redox chemistry of hydric soils. Wetland soils: genesis, hydrology, landscapes, and classification. CRC Press, Boca Raton, pp 85–105

  • Vourlitis GL, de Almeida Lobo F, Pinto OB et al (2015) Variations in aboveground vegetation structure along a nutrient availability gradient in the Brazilian Pantanal. Plant Soil 389:307–321

    Article  Google Scholar 

  • Wanninkhof R (2014) Relationship between wind speed and gas exchange over the ocean revisited. Limnol Oceanogr 12:351–362

    Article  Google Scholar 

  • Ward ND, Bianchi TS, Medeiros PM et al (2017) Where carbon goes when water flows: carbon cycling across the aquatic continuum. Frontiers in Marine Science 4:7

    Google Scholar 

  • Weilhoefer CL, Pan Y, Eppard S (2008) The effects of river floodwaters on floodplain wetland water quality and diatom assemblages. Wetlands 28:473–486

    Article  Google Scholar 

  • Weyhenmeyer GA, Fröberg M, Karltun E et al (2012) Selective decay of terrestrial organic carbon during transport from land to sea. Glob Change Biol 18:349–355

    Article  Google Scholar 

  • Williams CJ, Yamashita Y, Wilson HF et al (2010) Unraveling the role of land use and microbial activity in shaping dissolved organic matter characteristics in stream ecosystems. Limnol Oceanogr 55:1159–1171

    Article  Google Scholar 

  • Wilson HF, Xenopoulos MA (2009) Effects of agricultural land use on the composition of fluvial dissolved organic matter. Nat Geosci 2:37–41

    Article  Google Scholar 

  • Wu LC, Wei CB, Yang SS et al (2007) Relationship between carbon dioxide/methane emissions and the water quality/sediment characteristics of Taiwan’s main rivers. J Air Waste Manag Assoc 57:319–327

    Article  Google Scholar 

  • Yamashita Y, Scinto LJ, Maie N et al (2010) Dissolved organic matter characteristics across a subtropical wetland’s landscape: application of optical properties in the assessment of environmental dynamics. Ecosystems 13:1006–1019

    Article  Google Scholar 

  • Zeilhofer P (2006) Soil mapping in the Pantanal of Mato Grosso, Brazil, using multitemporal Landsat TM data. Wetlands Ecol Manag 14:445–461

    Article  Google Scholar 

  • Zhang Z, Zimmermann NE, Stenke A et al (2017) Emerging role of wetland methane emissions in driving 21st century climate change. PNAS 114:9647–9652

    Article  Google Scholar 

  • Zsolnay A, Baigar E, Jimenez M et al (1999) Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying. Chemosphere 38:45–50

    Article  Google Scholar 

  • Zurbrügg R, Suter S, Lehmann M et al (2013) Organic carbon and nitrogen export from a tropical dam-impacted floodplain system. Biogeosciences 10(1):23–38

    Article  Google Scholar 

Download references

Acknowledgements

This work constitutes a contribution to the project entitled “Carbon and ecohydrology of Mato Grosso ecosystems and agroecosystems” funded by the Coordination of Improvement of Higher Education Personnel (CAPES) science mobilization program Science without Borders (2366/2012 to EGC and MSJ) with complementary funding through the CAPES Postdoctoral Fellowship (017/2012) to HJD). Additional support was provided by the National Institute for Science and Technology in Wetlands (INCT-INAU), funded by the National Council for Scientific and Technological Development and the Ministry of Science and Technology (CNPq 573990/2008-5) as well as CNPq project 457824/2013-1 approved by call number 68/2013 MCTI/CNPq/FNDCT—Ac. Cross-sectional/LBA. We also thank CNPq through grant DTI-2 383389/2013-5 to MJL. We are greatly thankful for the laboratory space provided by Francisco de Almeida Lobo and Carmen Eugenia Rodríguez Ortíz from the Federal University of Mato Grosso (UFMT), as well as the logistics and transportation support of Ricardo Santos Amorim, Suzana Souza dos Santos, and the staff at the SESC-Pantanal and UFMT’s advanced research base (Base Avançada, Baia das Pedras).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Lathuillière.

Additional information

Responsible Editor: J.M. Melack.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 359 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalmagro, H.J., Lathuillière, M.J., Hawthorne, I. et al. Carbon biogeochemistry of a flooded Pantanal forest over three annual flood cycles. Biogeochemistry 139, 1–18 (2018). https://doi.org/10.1007/s10533-018-0450-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-018-0450-1

Keywords

Navigation