Advertisement

Biogeochemistry

, Volume 138, Issue 3, pp 277–295 | Cite as

Organic carbon transfers in the subtropical Red River system (Viet Nam): insights on CO2 sources and sinks

  • Huong Thi Mai Nguyen
  • Gilles Billen
  • Josette Garnier
  • Thi Phuong Quynh Le
  • Quoc Long Pham
  • Sylvain Huon
  • Emma Rochelle-Newall
Article

Abstract

The Red River, draining a 169,000 km2 watershed, is the second largest river in Viet Nam and constitutes the main source of water for a large percentage of the population of North Viet Nam. Here we present the results of an investigation into the spatial distribution and temporal dynamics of particulate and dissolved organic carbon (POC and DOC, respectively) in the Red River Basin. POC concentrations ranged from 0.24 to 5.80 mg C L−1 and DOC concentrations ranged from 0.26 to 5.39 mg C L−1. The application of the Seneque/Riverstrahler model to monthly POC and DOC measurements showed that, in general, the model simulations of the temporal variations and spatial distribution of organic carbon (OC) concentration followed the observed trends. They also show the impact of high population densities (up to 994 inhab km−2 in the delta area) on OC inputs in surface runoff from the different land use classes and from urban point sources. A budget of the main fluxes of OC in the whole river network, including diffuse inputs from soil leaching and runoff and point sources from urban centers, as well as algal net primary production and heterotrophic respiration was established using the model results. It shows the predominantly heterotrophic character of the river system and provides an estimate of CO2 emissions from the river of 330 Gg C year−1. This value is in reasonable agreement with the few available direct measurements of CO2 fluxes in the downstream part of the river network.

Keywords

Sub-tropical watershed modeling Organic carbon Point and diffuse sources C metabolism 

Notes

Acknowledgements

This work was financed by the NAFOSTED-Vietnam (105.09-2012.10 Project), the Asian Pacific Network (ARCP2014_03CMY_Quynh Project), the UMR METIS, the UMR iEES-Paris and the World Academy of Sciences (16-096 RG/CHE/AS_I Project). NTMH was financed by a PhD Fellowship (ARTS) from the French Research Institute for Development (IRD). This work forms part of the PhD Thesis requirements of NTMH.

Supplementary material

10533_2018_446_MOESM1_ESM.docx (438 kb)
Supplementary material 1 (DOCX 437 kb)

References

  1. Aitkenhead MJ, Aitkenhead-Peterson JA, McDowell WH, Smart RP, Cresser MS (2007) Modelling DOC export from watersheds in Scotland using neural networks. Comput Geosci 33:423–436CrossRefGoogle Scholar
  2. Aitkenhead-Peterson JA, McDowell WH, Neff JC (2003) Sources, production and regulations of allochthonous dissolved organic matter inputs to surface waters. In: Findlay SEG, Sinsabaugh RL (eds) Aquatic ecosystems: interactivity of dissolved organic matter. Academic, San Diego, pp 21–70Google Scholar
  3. Aristi I et al (2014) Flow regulation by dams affects ecosystem metabolism in Mediterranean rivers. Freshw Biol 59:1816–1829.  https://doi.org/10.1111/fwb.12385 CrossRefGoogle Scholar
  4. Asmala E, Autio R, Kaartokallio H, Pitkänen L, Stedmon CA, Thomas DN (2013) Bioavailability of riverine dissolved organic matter in three Baltic Sea estuaries and the effect of catchment land use. Biogeosciences 10:6969–6986CrossRefGoogle Scholar
  5. Band LE, Tague CL, Groffman P, Belt K (2001) Forest ecosystem processes at the watershed scale: hydrologic and ecological controls of nitrogen export. Hydrol Process 15:2013–2028CrossRefGoogle Scholar
  6. Baric D, Sigvardsson E (2007) Distribution and mobilisation of arsenic in Red River delta aquifers, Viet Nam. Department of Earth Sciences, Goteborg University, GotebergGoogle Scholar
  7. Beman MJ, Arrigo KR, Matson PA (2005) Agricultural runoff fuels large phytoplankton blooms in vulnerable areas of the ocean. Nature 434:211–214.  https://doi.org/10.1038/nature03370 CrossRefGoogle Scholar
  8. Bianchi TS, Wysocki LA, Stewart M, Filley TR, McKee BA (2007) Temporal variability in terrestrially-derived sources of particulate organic carbon in the lower Mississippi River and its upper tributaries. Geochim Cosmochim Acta 71:4425–4437.  https://doi.org/10.1016/j.gca.2007.07.011 CrossRefGoogle Scholar
  9. Billen G, Garnier J (1999) Nitrogen transfers through the Seine drainage network: a budget based on the application of the ‘Riverstrahler’ model. Hydrobiologia 410:139–150.  https://doi.org/10.1023/a:1003838116725 CrossRefGoogle Scholar
  10. Billen G, Garnier J, Hanset P (1994) Modeling phytoplankton development in whole drainage networks—the Riverstrahler model applied to the Seine River system. Hydrobiologia 289:119–137.  https://doi.org/10.1007/bf00007414 CrossRefGoogle Scholar
  11. Billen G, Thieu V, Garnier J, Silvestre M (2009) Modelling the N cascade in regional watersheds: the case study of the Seine, Somme and Scheldt Rivers. Agric Ecosyst Environ 133:234–246.  https://doi.org/10.1016/j.agee.2009.04.018 CrossRefGoogle Scholar
  12. Bonilla-Findji O, Rochelle-Newall E, Weinbauer MG, Pizay MD, Kerros ME, Gattuso JP (2009) Effect of seawater–freshwater cross-transplantations on viral dynamics and bacterial diversity and production. Aquat Microb Ecol 54:1–11CrossRefGoogle Scholar
  13. Borges AV et al (2015) Globally significant greenhouse-gas emissions from African inland waters. Nat Geosci 8:637–642.  https://doi.org/10.1038/ngeo2486 CrossRefGoogle Scholar
  14. Borges AV, Abril G, Bouillon S (2018) Carbon dynamics and CO2 and CH4 outgassing in the Mekong delta. Biogeosciences 15:1093–1114.  https://doi.org/10.5194/bg-15-1093-2018 CrossRefGoogle Scholar
  15. Bouillon S et al (2012) Organic matter sources, fluxes and greenhouse gas exchange in the Oubangui River (Congo River Basin). Biogeosciences 9:2045–2062.  https://doi.org/10.5194/bg-9-2045-2012 CrossRefGoogle Scholar
  16. Carlson CA, Ducklow HW, Hansell DA, Smith WO (1998) Organic carbon partitioning during spring phytoplankton blooms in the Ross Sea polynya and the Sargasso Sea. Limnol Oceanogr 43:375–386CrossRefGoogle Scholar
  17. Causse J et al (2015) Field and modelling studies of Escherichia coli loads in tropical streams of montane agro-ecosystems. J Hydro-environ Res 9:496–507.  https://doi.org/10.1016/j.jher.2015.03.003 CrossRefGoogle Scholar
  18. Chu AD, Pham MC, Nguyen MK (2010) Characteristic of urban wastewater in Hanoi City—nutritive value and potential risk in using for agriculture. J Sci Earth Sci Vietnam Natl Univ 26:42–47Google Scholar
  19. Clair TA, Ehrman JM (1996) Variations in discharge and dissolved organic carbon and nitrogen export from terrestrial basins with changes in climate: a neural network approach. Limnol Oceanogr 41:921–927CrossRefGoogle Scholar
  20. Cole JJ, Caraco NF (2001) Carbon in catchments: connecting terrestrial carbon losses with aquatic metabolism. Mar Freshw Res 52:101–110CrossRefGoogle Scholar
  21. Cole JJ et al (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:171–184CrossRefGoogle Scholar
  22. Coynel A, Seyler P, Etcheber H, Meybeck M, Orange D (2005) Spatial and seasonal dynamics of total suspended sediment and organic carbon species in the Congo River. Glob Biogeochem Cycles 19:GB4019.  https://doi.org/10.1029/2004gb002335 CrossRefGoogle Scholar
  23. Dang TH (2011) Erosion et transferts de matières en suspension, carbone et métaux dans le bassin versant du Fleuve Rouge depuis la frontière sino-vietnamienne jusqu’a l’entrée du delta. PhD Thesis, Université de Bordeaux 1Google Scholar
  24. Davies PM, Bunn SE, Hamilton SK (2008) Primary production in tropical streams and rivers. In: Dudgeon D (ed) Tropical stream ecology. Elsevier, Burlington, pp 23–42CrossRefGoogle Scholar
  25. Dixon JL, Beale R, Sargeant S, Tarran G, Nightingale PD (2014) Microbial acetone oxidation in coastal seawater. Front Microbiol 5:243.  https://doi.org/10.3389/fmicb.2014.00243 CrossRefGoogle Scholar
  26. Dodds WK, Veach AM, Ruffing CM, Larson DM, Fischer JL, Costigan KH (2013) Abiotic controls and temporal variability of river metabolism: multiyear analyses of Mississippi and Chattahoochee River data. Freshw Sci 32:1073–1087CrossRefGoogle Scholar
  27. Downing JA et al (2008) Sediment organic carbon burial in agriculturally eutrophic impoundments over the last century. Glob Biogeochem Cycles 22:GB1018CrossRefGoogle Scholar
  28. Farjalla VF, Amado AM, Suhett AL, Meirelles-Pereira F (2009) DOC removal paradigms in highly humic aquatic ecosystems. Environ Sci Pollut Res 16:531–538CrossRefGoogle Scholar
  29. Fenner N, Freeman C, Reynolds B (2005) Observations of a seasonally shifting thermal optimum in peatland carbon-cycling processes; implications for the global carbon cycle and soil enzyme methodologies. Soil Biol Biochem 37:1814–1821CrossRefGoogle Scholar
  30. Findlay S (2003) Bacterial response to variation in organic matter. In: Findlay S, Sinsabaugh RL (eds) Aquatic ecosystems: interactivity of dissolved organic matter. Academic, Amsterdam, pp 363–379CrossRefGoogle Scholar
  31. Finlay JC (2011) Stream size and human influences on ecosystem production in river networks. Ecosphere 2:1–21.  https://doi.org/10.1890/es11-00071.1 CrossRefGoogle Scholar
  32. Fuhrman J (1987) Close coupling between release and uptake of dissolved free amino acids in seawater studied by an isotope dilution approach. Mar Ecol Prog Ser 37:45–52CrossRefGoogle Scholar
  33. Garnier J, Billen G, Servais P (1992) Physiological characteristics and ecological rôle of small and large sized bacteria in a polluted river (Seine River, France). Arch Hydrobiol 37:83–94Google Scholar
  34. Garnier J, Billen G, Coste M (1995) Seasonal succession of diatoms and chlorophyceae in the drainage network of the Seine River—observations and modeling. Limnol Oceanogr 40:750–765CrossRefGoogle Scholar
  35. Garnier J, Billen G, Hannon E, Fonbonne S, Videnina Y, Soulie M (2002) Modelling the transfer and retention of nutrients in the drainage network of the Danube River. Estuar Coast Shelf Sci 54:285–308.  https://doi.org/10.1006/ecss.2000.0648 CrossRefGoogle Scholar
  36. Garnier J, Billen G, Even S, Etcheber H, Servais P (2008) Organic matter dynamics and budgets in the turbidity maximum zone of the Seine Estuary (France). Estuar Coast Shelf Sci 77:150–162.  https://doi.org/10.1016/j.ecss.2007.09.019 CrossRefGoogle Scholar
  37. Garnier J, Mounier EM, Laverman AM, Billen G (2010) Potential denitrification and N2O production in the sediments of the Seine River drainage network (France). J Environ Qual 39:449–459CrossRefGoogle Scholar
  38. Genzoli L, Hall RO Jr (2016) Shifts in Klamath River metabolism following a reservoir cyanobacterial bloom. Freshw Sci 35:795–809.  https://doi.org/10.1086/687752 CrossRefGoogle Scholar
  39. Hall ROJ, Yackulic CB, Kennedy TA, Yard MD, Rosi-Marshall EJ, Voichick N, Behn KE (2015) Turbidity, light, temperature, and hydropeaking control primary productivity in the Colorado River, Grand Canyon. Limnol Oceanogr 60:512–526CrossRefGoogle Scholar
  40. Hansell DA, Carlson CA, Schlitzer R (2012) Net removal of major marine dissolved organic carbon fractions in the subsurface ocean. Glob Biogeochem Cycles 26:GB1016.  https://doi.org/10.1029/2011gb004069 CrossRefGoogle Scholar
  41. Ho KC, Hui KCC (2001) Chemical contamination of the East River (Dongjiang) and its implication on sustainable development in the Pearl River Delta. Environ Int 26:303–308CrossRefGoogle Scholar
  42. Hoellein TJ, Bruesewitz DA, Richardson DC (2013) Revisiting Odum (1956): a synthesis of aquatic ecosystem metabolism. Limnol Oceanogr 58:2089–2100.  https://doi.org/10.4319/lo.2013.58.6.2089 CrossRefGoogle Scholar
  43. Holmes RM, McClelland JW, Raymond PA, Frazer BB, Peterson BJ, Stieglitz M (2008) Lability of DOC transported by Alaskan rivers to the Arctic Ocean. Geophys Res Lett 35:L03402CrossRefGoogle Scholar
  44. Hosen JD, McDonough OT, Febria CM, Palmer MA (2014) Dissolved organic matter quality and bioavailability changes across an urbanization gradient in headwater streams. Environ Sci Technol 48:7817–7824CrossRefGoogle Scholar
  45. Huang T-H, Fu Y-H, Pan P-Y, Chen C-TA (2012) Fluvial carbon fluxes in tropical rivers. Curr Opin Environ Sustain 4:162–169.  https://doi.org/10.1016/j.cosust.2012.02.004 CrossRefGoogle Scholar
  46. IMH (1997–2004) Vietnamese journal of meteo-hydrology. Institute of Meteo-Hydrology (IMH) in Vietnam, Hanoi (in Vietnamese)Google Scholar
  47. IMRR (2010) Main river delta. Italian Ministry of Foreign Affairs (IMRR), RomeGoogle Scholar
  48. IPCC (2013) Summary for policymakers. Cambridge University Press, CambridgeGoogle Scholar
  49. Jassby AD, Cloern JE, Cole BE (2002) Annual primary production: patterns and mechanisms of change in a nutrient-rich tidal ecosystem. Limnol Oceanogr 47:698–712CrossRefGoogle Scholar
  50. Kang PG, Mitchell MJ (2013) Bioavailability and size-fraction of dissolved organic carbon, nitrogen, and sulfur at the Arbutus Lake watershed, Adirondack Mountains, NY. Biogeochemistry 115:213–234CrossRefGoogle Scholar
  51. Katsoyiannis A, Samara C (2007) The fate of dissolved organic carbon (DOC) in the wastewater treatment process and its importance in the removal of wastewater contaminants. Environ Sci Pollut Res 14:284–292CrossRefGoogle Scholar
  52. Knapik HG, Fernandes CoVS, de Azevedo JCR, dos Santos MM, Dall’Agnol PC, Fontane DG (2015) Biodegradability of anthropogenic organic matter in polluted rivers using fluorescence, UV, and BDOC measurements. Environ Monit Assess.  https://doi.org/10.1007/s10661-015-4266-3 Google Scholar
  53. Laudon H et al (2011) Patterns and dynamics of dissolved organic carbon (DOC) in boreal streams: the role of processes, connectivity, and scaling. Ecosystems 14:880–893CrossRefGoogle Scholar
  54. Le TPQ et al (2016) Carbon fluxes and emission from the Red River (Vietnam and China): human activities and climate change. Final Report ARCP2014-03CMY-QuynhGoogle Scholar
  55. Le TPQ, Billen G, Garnier J, Thery S, Fezard C, Minh CV (2005) Nutrient (N, P) budgets for the Red River Basin (Vietnam and China). Glob Biogeochem Cycles 19:GB2022.  https://doi.org/10.1029/2004gb002405 Google Scholar
  56. Le TPQ, Billen G, Garnier J, Thery S, Ruelland D, Nghiem XA, Chau VM (2010) Nutrient (N, P, Si) transfers in the subtropical Red River system (China and Vietnam): modelling and budget of nutrient sources and sinks. J Asian Earth Sci 37:259–274.  https://doi.org/10.1016/j.jseaes.2009.08.010 CrossRefGoogle Scholar
  57. Le TPQ et al (2013) Carbon flux and emissions from the Red River: human activities and climate change, vol 3. Asia–Pacific Network for Global Change Research, KobeGoogle Scholar
  58. Le TPQ, Billen G, Garnier J, Chau VM (2015) Long-term biogeochemical functioning of the Red River (Vietnam): past and present situations. Reg Environ Change 15:329–339.  https://doi.org/10.1007/s10113-014-0646-4 CrossRefGoogle Scholar
  59. Luu TNM et al (2010) Hydrological regime and water budget of the Red River Delta (Northern Vietnam). J Asian Earth Sci 37:219–228.  https://doi.org/10.1016/j.jseaes.2009.08.004 CrossRefGoogle Scholar
  60. Mann PJ et al (2012) Controls on the composition and lability of dissolved organic matter in Siberia’s Kolyma River Basin. J Geophys Res 117:G01028CrossRefGoogle Scholar
  61. Menon P, Billen G, Servais P (2003) Mortality rates of autochthonous and fecal bacteria in natural and aquatic ecosystems. Water Res 37:4151–4158CrossRefGoogle Scholar
  62. Meybeck M (1982) Carbon, nitrogen and phosphorus transport by world rivers. Am J Sci 282:401–450CrossRefGoogle Scholar
  63. MONRE (2009–2014) Environment report of Vietnam. Ministry of Natural Resource and Environment (MONRE), Ha NoiGoogle Scholar
  64. Moreira-Turcq PF, Seyler P, Guyot JL, Etcheber H (2003) Characteristics of organic matter in the mixing zone of the Rio Negro and Rio Solimões of the Amazon River. Hydrol Process 17:1393–1404.  https://doi.org/10.1002/hyp.1291 CrossRefGoogle Scholar
  65. Nguyen TMH, Le TPQ, Garnier J, Janeau JL, Rochelle-Newall E (2016) Seasonal variability of faecal indicator bacteria numbers and die-off rates in the Red River Basin, North Viet Nam. Sci Rep 6:21644.  https://doi.org/10.1038/srep21644 CrossRefGoogle Scholar
  66. Ni H-G, Lu F-H, Luo X-L, Tian H-Y, Zeng EY (2008) Riverine inputs of total organic carbon and suspended particulate matter from the Pearl River Delta to the coastal ocean off South China. Mar Pollut Bull 56:1150–1157CrossRefGoogle Scholar
  67. Ouattara NK, Passerat J, Servais P (2011) Faecal contamination of water and sediment in the rivers of the Scheldt drainage network. Environ Monit Assess 183:243–257.  https://doi.org/10.1007/s10661-011-1918-9 CrossRefGoogle Scholar
  68. Parr TB, Cronan CS, Ohno T, Findlay SEG, Smith SMC, Simon KS (2015) Urbanization changes the composition and bioavailability of dissolved organic matter in headwater streams. Limnol Oceanogr 60:885–900CrossRefGoogle Scholar
  69. Pham MH, Nguyen TN, Nguyen HM, Pham HV, Berg M, Alder AC, Giger W (2010) Recent levels of organochlorine pesticides and polychlorinated biphenyls in sediments of the sewer system in Hanoi, Vietnam. Environ Pollut 158:913–920CrossRefGoogle Scholar
  70. Pommier T et al (2014) Off-site impacts of agricultural composting: role of terrestrially derived organic matter in structuring aquatic microbial communities and their metabolic potential. FEMS Microbiol Ecol 90:622–632.  https://doi.org/10.1111/1574-6941.12421 CrossRefGoogle Scholar
  71. Raymond PA, Saiers JE (2010) Event controlled DOC export from forested watersheds. Biogeochemistry 100:197–209.  https://doi.org/10.1007/s10533-010-9416-7 CrossRefGoogle Scholar
  72. Richey JE, Melack JM, Aufdenkampe AK, Ballester VM, Hess LL (2002) Outgassing from Amazonian Rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416:617–620.  https://doi.org/10.1038/416617a CrossRefGoogle Scholar
  73. Rivkin RB, Legendre L (2001) Biogenic carbon cycling in the upper ocean: effects of microbial respiration. Science 291:2398–2400CrossRefGoogle Scholar
  74. Rochelle-Newall EJ, Pizay MD, Middelburg JJ, Boschker HTS, Gattuso J-P (2004) Degradation of riverine dissolved organic matter by seawater bacteria. Aquat Microb Ecol 37:9–22CrossRefGoogle Scholar
  75. Rochelle-Newall EJ et al (2011) Phytoplankton diversity and productivity in a highly turbid, tropical coastal system (Bach Dang Estuary, Vietnam). Mar Pollut Bull 62:2317–2329CrossRefGoogle Scholar
  76. Rovelli L, Attard KM, Binley A, Heppell CM, Stahl H, Trimmer M, Glud RN (2017) Reach-scale river metabolism across contrasting sub-catchment geologies: effect of light and hydrology. Limnol Oceanogr 62:S381–S399.  https://doi.org/10.1002/lno.10619 CrossRefGoogle Scholar
  77. Ruelland D, Billen G, Brunstein D, Garnier J (2007) SENEQUE: a multi-scaling GIS interface to the Riverstrahler model of the biogeochemical functioning of river systems. Sci Total Environ 375:257–273.  https://doi.org/10.1016/j.scitotenv.2006.12.014 CrossRefGoogle Scholar
  78. Sarin MM, Sudheer AK, Balakrishna K (2002) Significance of riverine carbon transport: a case study of a large tropical river, Godavari (India). Sci China C 45:97–108Google Scholar
  79. Sarma VVSS et al (2009) Influence of river discharge on plankton metabolic rates in the tropical monsoon driven Godavari Estuary, India. Estuar Coast Shelf Sci 85:515–524.  https://doi.org/10.1016/j.ecss.2009.09.003 CrossRefGoogle Scholar
  80. Schiff SL, Aravena R, Trumbore SE, Hinton MJ, Elgood R, Dillon PJ (1997) Export of DOC from forested catchments on the Precambrian Shield of central Ontario: clues from 13C and 14C. Biogeochemistry 36:43–65CrossRefGoogle Scholar
  81. Servais P, Barillier A, Garnier J (1995) Determination of the biodegradable fraction of dissolved and particulate organic carbon in waters. Ann Limnol 31:75–80.  https://doi.org/10.1051/limn/1995005 CrossRefGoogle Scholar
  82. Servais P, Billen G, Garnier J, Idlafkih Z, Mouchel JM, Seidl M, Meybeck M (1998) Le carbone organique (Chapitre 10). In: Meybeck M, De Marsily G, Fustec E (eds) La Seine en son bassin. Fonctionnement écologique d’un système fluvial anthropisé. Elsevier, Paris, pp 483–529Google Scholar
  83. Servais P, Garnier J, Demarteau N, Brion N, Billen G (1999) Supply of organic matter and bacteria to aquatic ecosystems through waste water effluents. Water Res 33:3521–3531.  https://doi.org/10.1016/s0043-1354(99)00056-1 CrossRefGoogle Scholar
  84. Servais P, Garcia-Armisen T, George I, Billen G (2007) Fecal bacteria in the rivers of the Seine drainage network (France): sources, fate and modelling. Sci Total Environ 375:152–167.  https://doi.org/10.1016/j.scitotenv.2006.12.010 CrossRefGoogle Scholar
  85. Shanahan P, Henze M, Koncsos L, Rauch W, Reichert P, Somlyódy L, Vanrolleghem P (1998) River water quality modelling: II. Problems of the art. Water Sci Technol 38:245–252CrossRefGoogle Scholar
  86. Sondergaard M, Middelboe M (1995) A cross-system analysis of labile dissolved organic-carbon. Mar Ecol Prog Ser 118:283–294CrossRefGoogle Scholar
  87. Stanley EH, Powers SM, Lottig NR, Buffam I, Crawford JT (2012) Contemporary changes in dissolved organic carbon (DOC) in human-dominated rivers: is there a role for DOC management? Freshw Biol 57:26–42.  https://doi.org/10.1111/j.1365-2427.2011.02613.x CrossRefGoogle Scholar
  88. Stets EG, Cotner JB (2008) The influence of dissolved organic carbon on bacterial phosphorus uptake and bacteria–phytoplankton dynamics in two Minnesota lakes. Limnol Oceanogr 53:137–147CrossRefGoogle Scholar
  89. Thieu V, Billen G, Garnier J (2009) Nutrient transfer in three contrasting NW European watersheds: the Seine, Somme, and Scheldt Rivers. A comparative application of the Seneque/Riverstrahler model. Water Res 43:1740–1754.  https://doi.org/10.1016/j.watres.2009.01.014 CrossRefGoogle Scholar
  90. Tran DT (2003) Research in the estuarine environment and ecosystem of Red River: an overview of activities and results. Science and Technology Publishing House, HanoiGoogle Scholar
  91. Tranvik LJ et al (2009) Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr 54:2298–2314.  https://doi.org/10.4319/lo.2009.54.6_part_2.2298 CrossRefGoogle Scholar
  92. Trinh AD, Meysman F, Rochelle-Newall EJ, Bonnet M-P (2012) Quantification of sediment water interactions in a polluted tropical river through biogeochemical modeling. Glob Biogeochem Cycles 26:GB3010.  https://doi.org/10.1029/2010gb003963 CrossRefGoogle Scholar
  93. Twilley RR, Chen RH, Hargis T (1992) Carbon sinks in mangroves and their implications to carbon budget of tropical coastal ecosystems. Water Air Soil Pollut 64:265–288CrossRefGoogle Scholar
  94. Verhoff FH, Yaksich SM, Melfi DA (1980) River nutrient and chemical transport estimates. J Environ Eng Div Am Soc Civ Eng 10:591–608Google Scholar
  95. Vinh VD, Ouillon S, Thanh TD, Chu LV (2014) Impact of the Hoa Binh Dam (Vietnam) on water and sediment budgets in the Red River Basin and Delta. Hydrol Earth Syst Sci 18:3987–4005.  https://doi.org/10.5194/hess-18-3987-2014 CrossRefGoogle Scholar
  96. Wallace JB, Cuffney TF, Webster JR, Lugthart GJ, Chung K, Goldowitz BS (1991) Export of fine organic particles from headwater streams—effects of season, extreme discharges, and invertebrate manipulation. Limnol Oceanogr.  https://doi.org/10.4319/lo.1991.36.4.0670 Google Scholar
  97. Wang S, Yeager KM, Wan G, Liu C, Wang Y, Lu Y (2012) Carbon export and HCO3 fate in carbonate catchments: a case study in the Karst Plateau of southwestern China. Appl Geochem 27:64–72.  https://doi.org/10.1016/j.apgeochem.2011.09.003 CrossRefGoogle Scholar
  98. Wang ZA, Bienvenu DJ, Mann PJ, Hoering KA, Poulsen JR, Spencer RGM, Holmes RM (2013) Inorganic carbon speciation and fluxes in the Congo River. Geophys Res Lett 40:511–516.  https://doi.org/10.1002/grl.50160 CrossRefGoogle Scholar
  99. Wipfli MS, Gregovich DP (2002) Export of invertebrates and detritus from fishless headwater streams in southeastern Alaska: implications for downstream salmonid production. Freshw Biol 47:957–969CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Natural Product ChemistryVietnam Academy of Science and TechnologyHanoiVietnam
  2. 2.Sorbonne Université, IRD, UPD, UPEC, CNRS, INRA, Institut d’Ecologie et des Sciences de l’Environnment de Paris (iEES Paris)Paris Cedex 05France
  3. 3.UMR METIS (Sorbonne Université, CNRS, EPHE)ParisFrance

Personalised recommendations