, Volume 138, Issue 3, pp 245–260 | Cite as

Geothermally warmed soils reveal persistent increases in the respiratory costs of soil microbes contributing to substantial C losses

  • S. Marañón-JiménezEmail author
  • J. L. Soong
  • N. I. W. Leblans
  • B. D. Sigurdsson
  • J. Peñuelas
  • A. Richter
  • D. Asensio
  • E. Fransen
  • I. A. Janssens


Increasing temperatures can accelerate soil organic matter decomposition and release large amounts of CO2 to the atmosphere, potentially inducing positive warming feedbacks. Alterations to the temperature sensitivity and physiological functioning of soil microorganisms may play a key role in these carbon (C) losses. Geothermally active areas in Iceland provide stable and continuous soil temperature gradients to test this hypothesis, encompassing the full range of warming scenarios projected by the Intergovernmental Panel on Climate Change for the northern region. We took soils from these geothermal sites 7 years after the onset of warming and incubated them at varying temperatures and substrate availability conditions to detect persistent alterations of microbial physiology to long-term warming. Seven years of continuous warming ranging from 1.8 to 15.9 °C triggered a 8.6–58.0% decrease on the C concentrations in the topsoil (0–10 cm) of these sub-arctic silt-loam Andosols. The sensitivity of microbial respiration to temperature (Q10) was not altered. However, soil microbes showed a persistent increase in their microbial metabolic quotients (microbial respiration per unit of microbial biomass) and a subsequent diminished C retention in biomass. After an initial depletion of labile soil C upon soil warming, increasing energy costs of metabolic maintenance and resource acquisition led to a weaker capacity of C stabilization in the microbial biomass of warmer soils. This mechanism contributes to our understanding of the acclimated response of soil respiration to in situ soil warming at the ecosystem level, despite a lack of acclimation at the physiological level. Persistent increases in the respiratory costs of soil microbes in response to warming constitute a fundamental process that should be incorporated into climate change-C cycling models.


Soil CO2 fluxes Q10 Soil respiration Temperature increase Metabolic quotient Microbial biomass Microbial physiology 



This research was supported by the European Union’s Seventh Framework Program, the Ministry of Economy, Innovation, Science and Employment of the Junta de Andalucía (postdoctoral fellowship of the Andalucía Talent Hub Program, Marie Skłodowska-Curie actions, COFUND—Grant Agreement No 291780, to SMJ), the European Research Council Synergy grant 610028 (IMBALANCE-P), the research project “GEISpain” (CGL2014-52838-C2-1-R) of the Spanish Ministry of Economy and Competitiveness and the Research Council of the University of Antwerp (FORHOT TOP-BOF project). This work contributes to the FSC-Sink, CAR-ES and ClimMani COST Action (ES1308). The Agricultural University of Iceland and Mogilsá—the Icelandic Forest Research, provided logistical support for the present study. We thank Matthias Meys, Sara Diels, Johan De Gruyter, Giovanni Dalmasso, Fabiana Quirós and Nadine Calluy for their invaluable help in the laboratory and Sara Vicca and James Weedon for their constructive suggestions. We further thank Anne Cools and Tom Van Der Spiet for their assistance with the lab chemical analyses.


  1. Aldén L, Demoling F, Bååth E (2001) Rapid method of determining factors limiting bacterial growth in soil. Appl Environ Microbiol 67(4):1830–1838CrossRefGoogle Scholar
  2. Allison SD, Wallenstein MD, Bradford MA (2010) Soil-carbon response to warming dependent on microbial physiology. Nat Geosci 3:336–340CrossRefGoogle Scholar
  3. Anderson T-H, Domsch KH (2010) Soil microbial biomass: the eco-physiological approach. Soil Biol Biochem 42:2039–2043CrossRefGoogle Scholar
  4. Apple JK, del Giorgio PA, Kemp WM (2006) Temperature regulation of bacterial production, respiration, and growth efficiency in a temperate salt-marsh estuary. Aquat Microb Ecol 43:243–254CrossRefGoogle Scholar
  5. Arnalds Ó (2015) The soils of Iceland, 1st edn. Springer, DordrechtGoogle Scholar
  6. Bailey VL, Bond-Lamberty B, DeAngelis K, Grandy AS, Hawkes CV, Heckman K, Lajtha K, Phillips RP, Sulman BN, Todd-Brown KEO, Wallenstein MD (2018) Soil carbon cycling proxies: understanding their critical role in predicting climate change feedbacks. Glob Change Biol 24(3):895–905CrossRefGoogle Scholar
  7. Bárcenas-Moreno G, Gómez-Brandón M, Rousk J, Bååth E (2009) Adaptation of soil microbial communities to temperature: comparison of fungi and bacteria in a laboratory experiment. Glob Change Biol 15:2950–2957CrossRefGoogle Scholar
  8. Bardgett RD, Freeman C, Ostle NJ (2008) Microbial contributions to climate change through carbon cycle feedbacks. ISME J 2:805–814CrossRefGoogle Scholar
  9. Biasi C, Rusalimova O, Meyer H, Kaiser C, Wanek W, Barsukov P, Junger H, Richter A (2005) Temperature-dependent shift from labile to recalcitrant carbon sources of arctic heterotrophs. Rapid Commun Mass Spectrom 19:1401–1408CrossRefGoogle Scholar
  10. Billings SA, Ballantyne F (2013) How interactions between microbial resource demands, soil organic matter stoichiometry, and substrate reactivity determine the direction and magnitude of soil respiratory responses to warming. Glob Change Biol 19:90–102CrossRefGoogle Scholar
  11. Birgander J, Reischke S, Jones DL, Rousk J (2013) Temperature adaptation of bacterial growth and 14C-glucose mineralisation in a laboratory study. Soil Biol Biochem 65:294–303CrossRefGoogle Scholar
  12. Blagodatskaya E, Kuzyakov Y (2008) Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. Biol Fertil Soils 45:115–131CrossRefGoogle Scholar
  13. Bölscher T, Paterson E, Freitag T, Thornton B, Herrmann AM (2017) Temperature sensitivity of substrate-use efficiency can result from altered microbial physiology without change to community composition. Soil Biol Biochem 109:59–69CrossRefGoogle Scholar
  14. Bradford MA, Davies CA, Frey SD, Maddox TR, Melillo JM, Mohan JE, Reynolds JF, Treseder KK, Wallenstein MD (2008) Thermal adaptation of soil microbial respiration to elevated temperature. Ecol Lett 11:1316–1327CrossRefGoogle Scholar
  15. Bradford MA, Watts BW, Davies CA (2010) Thermal adaptation of heterotrophic soil respiration in laboratory microcosms. Glob Change Biol 16:1576–1588CrossRefGoogle Scholar
  16. Bremner JM, Keeney DR (1966) Determination and isotope-ratio analysis of different forms of nitrogen in soils: 3. exchangeable ammonium, nitrate, and nitrite by extraction-distillation methods 1. Soil Sci Soc Am J 30:577–582CrossRefGoogle Scholar
  17. Carey JC, Tang J, Templer PH, Kroeger KD, Crowther TW, Burton AJ, Dukes JS, Emmett B, Frey SD, Heskel MA, Jiang L, Machmuller MB, Mohan J, Panetta AM, Reich PB, Reinsch S, Wang X, Allison SD, Bamminger C, Bridgham S, Collins SL, de Dato G, Eddy WC, Enquist BJ, Estiarte M, Harte J, Henderson A, Johnson BR, Larsen KS, Luo Y, Marhan S, Melillo JM, Peñuelas J, Pfeifer-Meister L, Poll C, Rastetter E, Reinmann AB, Reynolds LL, Schmidt IK, Shaver GR, Strong AL, Suseela V, Tietema A (2016) Temperature response of soil respiration largely unaltered with experimental warming. Proc Natl Acad Sci 113:13797–13802CrossRefGoogle Scholar
  18. Castro HF, Classen AT, Austin EE, Norby RJ, Schadt CW (2010) Soil microbial community response to multiple experimental climate change drivers. Appl Environ Microbiol 76:999–1007CrossRefGoogle Scholar
  19. Conant RT, Ryan MG, Ågren GI, Birge HE, Davidson EA, Eliasson PE, Evans SE, Frey SD, Giardina CP, Hopkins FM, Hyvönen R, Kirschbaum MUF, Lavallee JM, Leifeld J, Parton WJ, Steinweg J, Wallenstein MD, Wetterstedt ÅJ, Bradford MA (2011) Temperature and soil organic matter decomposition rates—synthesis of current knowledge and a way forward. Glob Change Biol 17:3392–3404CrossRefGoogle Scholar
  20. Crowther T, Todd-Brown K, Rowe C, Wieder W, Carey J, Machmuller M, Snoek B, Fang S, Zhou G, Allison S, Blair J, Bridgham S, Burton A, Carrillo Y, Reich P, Clark J, Classen A, Dijkstra F, Elberling B, Emmett B, Estiarte M, Frey S, Guo J, Harte J, Jiang L, Johnson B, Kröel-Dulay G, Larsen K, Laudon H, Lavallee J, Luo Y, Lupascu M, Ma L, Marhan S, Michelsen A, Mohan J, Niu S, Pendall E, Peñuelas J, Pfeifer-Meister L, Poll C, Reinsch S, Reynolds L, Schmidt I, Sistla S, Sokol N, Templer P, Treseder K, Welker J, Bradford M (2016) Quantifying global soil carbon losses in response to warming. Nature 540:104–108CrossRefGoogle Scholar
  21. Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173CrossRefGoogle Scholar
  22. Dijkstra P, Thomas SC, Heinrich PL, Koch GW, Schwartz E, Hungate BA (2011) Effect of temperature on metabolic activity of intact microbial communities: evidence for altered metabolic pathway activity but not for increased maintenance respiration and reduced carbon use efficiency. Soil Biol Biochem 43:2023–2031CrossRefGoogle Scholar
  23. Eliasson PE, Ågren GI (2011) Feedback from soil inorganic nitrogen on soil organic matter mineralisation and growth in a boreal forest ecosystem. Plant Soil 338:193–203CrossRefGoogle Scholar
  24. Eliasson PE, McMurtrie RE, Pepper DA, Stromgren M, Linder S, Ågren GI (2005) The response of heterotrophic CO2 flux to soil warming. Glob Change Biol 11(1):167–181CrossRefGoogle Scholar
  25. Feng X, Simpson MJ (2009) Temperature and substrate controls on microbial phospholipid fatty acid composition during incubation of grassland soils con- trasting in organic matter quality. Soil Biol Biochem 41:804–812CrossRefGoogle Scholar
  26. Frey SD, Lee J, Melillo JM, Six J (2013) The temperature response of soil microbial efficiency and its feedback to climate. Nat Clim Change 3:395–398CrossRefGoogle Scholar
  27. Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I, Bala G, John J, Jones C, Joos F, Kato T, Kawamiya M, Knorr W, Lindsay K, Matthews HD, Raddatz T, Rayner P, Reick C, Roeckner E, Schnitzler GK, Schnur R, Strassmann K, Weaver AJ, Yoshikawa C, Zeng N (2006) Climate-carbon cycle feedback analysis: results from the C4MIP model intercomparison. J Clim 19:3337–3353CrossRefGoogle Scholar
  28. Giardina CP, Ryan MG (2000) Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature 404:858–861CrossRefGoogle Scholar
  29. Hagerty SB, van Groenigen K, Allison SD, Hungate BA, Schwartz E, Koch GW, Kolka RK, Dijkstra P (2014) Accelerated microbial turnover but constant growth efficiency with warming in soil. Nat Clim Change 4:903–906CrossRefGoogle Scholar
  30. Hartley IP, Hopkins DW, Garnett MH, Sommerkorn M, Wookey PA (2008) Soil microbial respiration in arctic soil does not acclimate to temperature. Ecol Lett 11:1092–1100CrossRefGoogle Scholar
  31. Hicks Pries CE, Castanha C, Porras RC, Torn MS (2017) The whole-soil carbon flux in response to warming. Science 355:1420–1423CrossRefGoogle Scholar
  32. IPCC, 2013. Climate Change (2013) In: Stocker, TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) The physical science basis. Contribution of working group i to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  33. Jenkinson DS, Powlson DS (1976) Effects of biocidal treatments on metabolism in soil. 5. Method for measuring soil biomass. Soil Biol Biochem 8:209–213CrossRefGoogle Scholar
  34. Jenkinson DS, Adams DE, Wild A (1991) Model estimates of CO2 emissions from soil in response to global warming. Nature 351:304–306. CrossRefGoogle Scholar
  35. Jones DL, Willett VB (2006) Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biol Biochem 38:991–999CrossRefGoogle Scholar
  36. Karhu K, Auffret MD, Dungait JAJ, Hopkins DW, Prosser JI, Singh BK, Subke J-A, Wookey PA, Ågren GI, Sebastià M-T, Gouriveau F, Bergkvist G, Meir P, Nottingham AT, Salinas N, Hartley IP (2014) Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature 513:81–84CrossRefGoogle Scholar
  37. Kirschbaum MUF (2004) Soil respiration under prolonged soil warming: are rate reductions caused by acclimation or substrate loss? Glob Change Biol 10:1870–1877CrossRefGoogle Scholar
  38. Knorr W, Prentice IC, House JI, Holland EA (2005) Long-term sensitivity of soil carbon turnover to warming. Nature 433:298–301CrossRefGoogle Scholar
  39. Leblans NIW (2016) Natural gradients in temperature and nitrogen: Iceland represents a unique environment to clarify long-term global change effects on carbon dynamics. Doctoral thesis. Faculty of Agricultural and Environmental Sciences, IcelandGoogle Scholar
  40. Leblans NIW, Sigurdsson BD, Vicca S, Soong JL, Weedon JT, Poeplau C, Van de Velde K, Verbruggen E, Wallander H, Liu ZF, Marañón-Jiménez S, Gundersen P, Maljanen M, Guenet B, Dauwe S, Katterer T, Oddsdttir ES, Ostonen I, Peñuelas J, Richter A, Van Bodegom PM, Walker TN, Janssens IA (2018) Fast and persistent soil carbon reductions in naturally-warmed grasslands (under review)Google Scholar
  41. Liang C, Balser TC (2011) Microbial production of recalcitrant organic matter in global soils: implications for productivity and climate policy. Nat Rev Microbiol 9:75–75CrossRefGoogle Scholar
  42. Liu D, Keiblinger KM, Schindlbacher A, Wegner U, Sun H, Fuchs S, Lassek C, Riedel K, Zechmeister-Boltenstern S (2017) Microbial functionality as affected by experimental warming of a temperate mountain forest soil—a metaproteomics survey. Appl Soil Ecol 117–118:196–202CrossRefGoogle Scholar
  43. Luan J, Liu S, Chang SX, Wang J, Zhu X, Liu K, Wu J (2014) Different effects of warming and cooling on the decomposition of soil organic matter in warm–temperate oak forests: a reciprocal translocation experiment. Biogeochemistry 121(3):551–564CrossRefGoogle Scholar
  44. Luo Y, Melillo J, Niu S, Beier C, Clark JS, Classen AT, Davidson E, Dukes JS, Evans RD, Field CB, Czimczik CI, Keller M, Kimball BA, Kueppers LM, Norby RJ, Pelini SL, Pendall E, Rastetter E, Six J, Smith M, Tjoelker MG, Torn MS (2011) Coordinated approaches to quantify long-term ecosystem dynamics in response to global change. Glob Change Biol 17:843–854CrossRefGoogle Scholar
  45. Manzoni S, Taylor P, Richter A, Porporato A, Ågren GI (2012) Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytol 196:79–91CrossRefGoogle Scholar
  46. Melillo JM, Steudler PA, Aber JD, Newkirk K, Lux H, Bowles FP, Catricala C, Magill A, Ahrens T, Morrisseau S (2002) Soil warming and carbon-cycle feedbacks to the climate system. Science 298:2173–2176CrossRefGoogle Scholar
  47. Melillo JM, Frey SD, DeAngelis KM, Werner WJ, Bernard MJ, Bowles FP, Pold G, Knorr MA, Grandy AS (2017) Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science 358:101–105CrossRefGoogle Scholar
  48. Miltner A, Bombach P, Schmidt-Brücken B, Kästner M (2012) SOM genesis: microbial biomass as a significant source. Biogeochemistry 111:41–55CrossRefGoogle Scholar
  49. Olsen SR, Cole CV, Watanabe WS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. United States Department of Agriculture Circular no. 939Google Scholar
  50. Pansu M, Gautheyrou J (2006) Handbook of soil analysis. Mineralogical, organic and inorganic methods. Springer, MontpellierCrossRefGoogle Scholar
  51. Phillips CL, Nickerson N, Risk D, Bond BJ (2011) Interpreting diel hysteresis between soil respiration and temperature. Glob Change Biol 17:515–527CrossRefGoogle Scholar
  52. Poeplau C, Kätterer T, Leblans NIW, Sigurdsson BD (2016) Sensitivity of soil carbon fractions and their specific stabilisation mechanisms to extreme soil warming in a subarctic grassland. Glob Change Biol. Google Scholar
  53. Pold G, Grandy AS, Melillo JM, DeAngelis KM (2017) Changes in substrate availability drive carbon cycle response to chronic warming. Soil Biol Biochem 110:68–78CrossRefGoogle Scholar
  54. Quinn GP, Keough MJ (2009) Experimental design and data analysis for biologists. Cambridge University Press, CambridgeGoogle Scholar
  55. Radujkovic D, Verbruggen E, Sigurdsson BD, Leblans NI, Janssens IA, Vicca S, Weedon JT (2018) Prolonged exposure does not increase soil microbial community response to warming along geothermal gradients. FEMS Microb Ecol 94(2).
  56. Raich JW, Schlesinger WH (1992) The global carbon-dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus Ser B-Chem Phys Meteorol 44:81–99CrossRefGoogle Scholar
  57. Rustad L, Campbell J, Marion G, Norby R, Mitchell M, Hartley A, Cornelissen J, Gurevitch J, Available N (2001) A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126:543–562CrossRefGoogle Scholar
  58. Schimel J, Balser TC, Wallenstein M (2007) Microbial stress-response physiology and its implications for ecosystem function. Ecology 88:1386–1394CrossRefGoogle Scholar
  59. Schindlbacher A, Rodler A, Kuffner M, Kitzler B, Sessitsch A, Zechmeister-Boltenstern S (2011) Experimental warming effects on the microbial community of a temperate mountain forest soil. Soil Biol Biochem 43:1417–1425CrossRefGoogle Scholar
  60. Schindlbacher A, Schnecker J, Takriti M, Borken W, Wanek W (2015) Microbial physiology and soil CO2 efflux after 9 years of soil warming in a temperate forest—no indications for thermal adaptations. Glob Change Biol 21(11):4265–4277CrossRefGoogle Scholar
  61. Sigurdsson BD, Leblans NIW, Dauwe S, Gudmundsdottir E, Gundersen P, Gunnarsdottir GE, Holmstrup M, Ilieva-Makulec K, Katterer T, Marteinsdottir B-S, Maljanen M, Oddsdottir ES, Ostonen I, Penuelas J, Poeplau C, Richter A, Sigurdsson P, Van Bodegom P, Wallander H, Weedon J, Janssens I (2016) Geothermal ecosystems as natural climate change experiments: the ForHot research site in Iceland as a case study. Icel Agric Sci 29:53–71CrossRefGoogle Scholar
  62. Sinsabaugh RL, Manzoni S, Moorhead DL, Richter A (2013) Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling. Ecol Lett 16:930–939CrossRefGoogle Scholar
  63. Six J, Frey SD, Thiet RK, Batten KM (2006) Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci Soc Am J 70:555–569CrossRefGoogle Scholar
  64. Sparling GP, West AW (1988) Modifications to the fumigation- extraction technique to permit simultaneous extraction and estimation of soil microbial-C and microbial-N. Commun Soil Sci Plant Anal 19:327–344CrossRefGoogle Scholar
  65. Steinweg MJ, Plante AF, Conant RT, Paul EA, Tanaka DL (2008) Patterns of substrate utilization during long-term incubations at different temperatures. Soil Biol Biochem 40:2722–2728CrossRefGoogle Scholar
  66. Streit K, Hagedorn F, Hiltbrunner D, Portmann M, Saurer M, Buchmann N, Wild B, Richter A, Wipf S, Siegwolf RTW (2014) Soil warming alters microbial substrate use in alpine soils. Glob Change Biol 20(4):1327–1338CrossRefGoogle Scholar
  67. Subke J-A, Bahn M (2010) On the ‘temperature sensitivity’ of soil respiration: can we use the immeasurable to predict the unknown? Soil Biol Biochem 42:1653–1656CrossRefGoogle Scholar
  68. Todd-Brown KEO, Randerson JT, Hopkins F, Arora V, Hajima T, Jones C, Shevliakova E, Tjiputra J, Volodin E, Wu T, Zhang Q, Allison SD (2014) Changes in soil organic carbon storage predicted by Earth system models during the 21st century. Biogeosciences 11:2341–2356CrossRefGoogle Scholar
  69. Treseder KK, Balser TC, Bradford MA, Brodie EL, Dubinsky EA, Eviner VT, Hofmockel KS, Lennon JT, Levine UY, MacGregor BJ, Pett-Ridge J, Waldrop MP (2012) Integrating microbial ecology into ecosystem models: challenges and priorities. Biogeochemistry 109:7–18CrossRefGoogle Scholar
  70. Tucker CL, Bell J, Pendall E, Ogle K (2013) Does declining carbon-use efficiency explain thermal acclimation of soil respiration with warming? Glob Change Biol 19:252–263CrossRefGoogle Scholar
  71. Van’t Hoff JH (1898) Lectures on theoretical and physical chemistry. Part 1. Chemical dynamics. Edward Arnold, LondonGoogle Scholar
  72. Wagai R, Kishimoto-Mo AW, Yonemura S, Shirato Y, Hiradate S, Yagasaki Y (2013) Linking temperature sensitivity of soil organic matter decomposition to its molecular structure, accessibility, and microbial physiology. Glob Change Biol 19:1114–1125CrossRefGoogle Scholar
  73. Wei H, Guenet B, Vicca S, Nunan N, AbdElgawad H, Pouteau V, Shen W, Janssens IA (2014) Thermal acclimation of organic matter decomposition in an artificial forest soil is related to shifts in microbial community structure. Soil Biol Biochem 71:1–12CrossRefGoogle Scholar
  74. Wieder WR, Bonan GB, Allison SD (2013) Global soil carbon projections are improved by modelling microbial processes. Nat Clim Change 3:909–912CrossRefGoogle Scholar
  75. Zhang Y-M, Wu N, Zhou G-Y, Bao W-K (2005) Changes in enzyme activities of spruce (Picea balfouriana) forest soil as related to burning in the eastern Qinghai-Tibetan Plateau. Appl Soil Ecol 30:215–225CrossRefGoogle Scholar
  76. Zhou J, Xue K, Xie J, Deng Y, Wu L, Cheng X, Fei S, Deng S, He Z, Nostrand JD, Luo Y (2011) Microbial mediation of carbon-cycle feedbacks to climate warming. Nat Clim Change 2:106–110CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Atmospheric Physics Group (GFAT), Department of Applied Physics, Faculty of SciencesUniversity of GranadaGranadaSpain
  2. 2.Centre of Excellence PLECO (Plant and Vegetation Ecology), Department of BiologyUniversity of AntwerpenWilrijkBelgium
  3. 3.Agricultural University of IcelandBorgarnesIceland
  4. 4.CREAFBarcelonaSpain
  5. 5.CSIC, Global Ecology Unit CREAF-CSIC-UABBarcelonaSpain
  6. 6.Department of Microbiology and Ecosystem ScienceUniversity of ViennaViennaAustria
  7. 7.StatUa Center for StatisticsUniversity of AntwerpAntwerpBelgium

Personalised recommendations