, Volume 137, Issue 1–2, pp 143–161 | Cite as

Denitrification in a meromictic lake and its relevance to nitrogen flows within a moderately impacted forested catchment

  • Daniele NizzoliEmail author
  • Marco Bartoli
  • Roberta Azzoni
  • Daniele Longhi
  • Giuseppe Castaldelli
  • Pierluigi Viaroli


We analysed the spatial and temporal variability of benthic nitrogen fluxes and denitrification rates in a sub-alpine meromictic lake (Lake Idro, Italy), and compared in-lake nitrogen retention and loss with the net anthropogenic nitrogen inputs to the watershed. We hypothesized a low nitrogen retention and denitrification capacity due to meromixis. This results from nitrate supply from the epilimnion slowing down during stratification and oxygen deficiency inhibiting nitrification and promoting ammonium recycling and its accumulation. We also hypothesized a steep vertical gradient of sedimentary denitrification capacity, decreasing with depth and oxygen deficiency. These are important and understudied issues in inland waters, as climate change and direct anthropic pressures may increase the extent of meromixis. Nearshore sediments had high denitrification rates (87 mg m−2 day−1) and efficiency (~ 100%), while in the monimolimnion denitrification was negligible. The littoral zone, covering 10% of the lake surface, contributed ~50% of total denitrification, while the monimolimnion, which covered 70% of the sediment surface, contributed to < 13% of total denitrification. The persistent and expanding meromixis of Lake Idro is expected to further decrease its nitrogen removal capacity (31% of the incoming nitrogen load) compared to what has been measured in other temperate lakes. Values up to 60% are generally reported for other such lakes. Results of this study are relevant as the combination of anthropogenic pressures, climate change and meromixis may threaten the nitrogen processing capacity of lakes.


Benthic fluxes Denitrification Meromixis NANI Nitrogen budget Nitrogen removal 



This study was funded by Regione Lombardia within the SILMAS project (Sustainable Instruments for Lakes Management in the Alpine Space, Alpine Space Programme European territorial cooperation 2007–2013) and the POR FESR 2007–2013 Programme. We are very grateful to Daniele Magni and Clara Bravi for their support during the research activities and Prof. Robert R. Christian who kindly revised the manuscript and the English language. We also thank the Chiese Consortium and the Autonomous Province of Trento for providing data on Rivers Chiese and Caffaro discharges.

Supplementary material

10533_2017_407_MOESM1_ESM.docx (112 kb)
Supplementary material 1 (DOCX 112 kb)


  1. APHA (American Public Health Association) (1998) Standard methods for the examination of water and wastewaters. 20th edn APHA Washington DCGoogle Scholar
  2. Azzoni R, Nizzoli D, Bartoli M, Christian RR, Viaroli P (2015) Factors controlling benthic biogeochemistry in urbanized coastal systems: an example from Venice (Italy). Estuar Coast 38(3):1016–1031CrossRefGoogle Scholar
  3. Bartoli M, Racchetti E, Delconte CA, Sacchi E, Soana E, Laini A, Longhi D, Viaroli P (2012) Nitrogen balance and fate in a heavily impacted watershed (Oglio River, Northern Italy): in quest of the missing sources and sinks. Biogeosciences 9(1):361–373CrossRefGoogle Scholar
  4. Bolpagni R (2013) Macrophyte richness and aquatic vegetation complexity of the Lake Idro (Northern Italy). Ann Bot 3:34–43Google Scholar
  5. Bower CE, Holm-Hansen T (1980) A salicylate-hypochlorite method for determining ammonia in seawater. Can J Fish Aquat Sci 37(5):794–798CrossRefGoogle Scholar
  6. Boyer EW, Goodale CL, Jaworski NA, Howarth RW (2002) Anthropogenic nitrogen sources and relationships to riverine nitrogen export in the northeastern USA. Biogeochemistry 57(1):137–169CrossRefGoogle Scholar
  7. Bruesewitz DA, Hamilton DP, Schipper LA (2011) Denitrification potential in lake sediment increases across a gradient of catchment agriculture. Ecosystems 14(3):341–352CrossRefGoogle Scholar
  8. Bruesewitz Denise A, Tank Jennifer L, Hamilton Stephen K (2012) Incorporating spatial variation of nitrification and denitrification rates into whole-lake nitrogen dynamics. J Geophys Res Biogeosci 117:G3CrossRefGoogle Scholar
  9. Burgin AJ, Hamilton SK (2007) Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. Front Ecol Environ 5(2):89–96CrossRefGoogle Scholar
  10. Bussink DW, Oenema O (1988) Ammonia volatilization from dairy farming systems in temperate areas: a review. Nutr Cycl Agroecosyst 51(1):19CrossRefGoogle Scholar
  11. Chen F, Hou L, Liu M, Zheng Y, Yin G, Lin X, Zong H, Deng F, Gao J, Jiang X (2016) Net anthropogenic nitrogen inputs (NANI) into the Yangtze River basin and the relationship with riverine nitrogen export. J Geophys Res Biogeosci 121:451–465CrossRefGoogle Scholar
  12. Dalsgaard T, Nielsen LP, Brotas V, Viaroli P, Underwood GJC, Nedwell DB, Sundbäck K, Rysgaard S, Miles A, Bartoli M, Dong L, Thornton DCO, Ottosen LDM, Castaldelli G, Risgaard-Petersen N (2000) Protocol handbook for NICE-Nitrogen cycling in estuaries: a project under the EU research programme. Marine Science and Technology (MAST III). National Environmental Research Institute, Silkeborg, p 62Google Scholar
  13. Danis PA, Von Grafenstein U, Masson-Delmotte V, Planton S, Gerdeaux D, Moisselin JM (2004) Vulnerability of two European lakes in response to future climatic changes. Geophys Res Lett 31(21):L21507. CrossRefGoogle Scholar
  14. David MB, Wall LG, Royer TV, Tank JL (2006) Denitrification and the nitrogen budget of a reservoir in an agricultural landscape. Ecol Appl 16(6):2177–2190CrossRefGoogle Scholar
  15. EMEP (European Monitoring and Evaluation Programme) (2010)
  16. Eyre BD, Ferguson AJ (2009) Denitrification efficiency for defining critical loads of carbon in shallow coastal ecosystems. Hydrobiologia 629(1):137–146CrossRefGoogle Scholar
  17. FAOSTAT (Food and Agriculture Organization of the United Nations) (2010)
  18. Ficker H, Luger M, Gassner H (2017) From dimictic to monomictic: empirical evidence of thermal regime transitions in three deep alpine lakes in Austria induced by climate change. Freshw Biol. Google Scholar
  19. Finlay JC, Small GE, Sterner RW (2013) Human influences on nitrogen removal in lakes. Science 342(6155):247–250CrossRefGoogle Scholar
  20. Foley B, Jones ID, Maberly SC, Rippey B (2012) Long-term changes in oxygen depletion in a small temperate lake: effects of climate change and eutrophication. Freshw Biol 57(2):278–289CrossRefGoogle Scholar
  21. Francis TB, Schindler DE, Fox JM, Seminet-Reneau E (2007) Effects of urbanization on the dynamics of organic sediments in temperate lakes. Ecosystems 10:1057–1068CrossRefGoogle Scholar
  22. Galloway JN, Aber JD, Erisman JW, Seitzinger SP, Howarth RW, Cowling EB, Cosby BJ (2003) The nitrogen cascade. Bioscience 53(4):341–356CrossRefGoogle Scholar
  23. Gao W, Howarth RW, Hong B, Swaney DP, Guo HC (2014) Estimating net anthropogenic nitrogen inputs (NANI) in the Lake Dianchi basin of China. Biogeosciences 11(16):4577–4586CrossRefGoogle Scholar
  24. Garibaldi L, Brizzio MC, Varallo A, Mosello R (1996) Water chemistry of the meromictic lake Idro (Northern Italy). Memorie Istituto Italiano di Idrobiol 54:77–96Google Scholar
  25. Groffman PM, Altabet MA, Böhlke JK, Butterbach-Bahl K, David MB, Firestone MK, Giblin AE, Kana TM, Nielsen LP, Voytek MA (2006) Methods for measuring denitrification: diverse approaches to a difficult problem. Ecol Appl 16(6):2091–2122CrossRefGoogle Scholar
  26. Hamersley MR, Woebken D, Boehrer B, Schultze M, Lavik G, Kuypers MM (2009) Water column anammox and denitrification in a temperate permanently stratified lake (Lake Rassnitzer, Germany). Syst Appl Microbiol 32(8):571–582CrossRefGoogle Scholar
  27. Han H, Allan JD (2008) Estimation of nitrogen inputs to catchments: comparison of methods and consequences for riverine export prediction. Biogeochemistry 91(2–3):177–199CrossRefGoogle Scholar
  28. Han H, Allan JD (2012) Uneven rise in N inputs to the Lake Michigan Basin over the 20th century corresponds to agricultural and societal transitions. Biogeochemistry 109(1–3):175–187CrossRefGoogle Scholar
  29. Harrison JA, Maranger RJ, Alexander RB, Giblin AE, Jacinthe PA, Mayorga E, Seitzinger SP, Sobota DJ, Wollheim WM (2009) The regional and global significance of nitrogen removal in lakes and reservoirs. Biogeochemistry 93(1–2):143–157CrossRefGoogle Scholar
  30. Hofmann H, Lorke A, Peeters F (2008) Temporal scales of water-level fluctuations in lakes and their ecological implications. Hydrobiologia 613:85–96CrossRefGoogle Scholar
  31. Hong B, Swaney DP, Mörth CM, Smedberg E, Hägg HE, Humborg C, Howarth RW, Bouraoui F (2012) Evaluating regional variation of net anthropogenic nitrogen and phosphorus inputs (NANI/NAPI), major drivers, nutrient retention pattern and management implications in the multinational areas of Baltic Sea basin. Ecol Mod 227:117–135CrossRefGoogle Scholar
  32. Hong B, Swaney DP, Howarth RW (2013) Estimating net anthropogenic nitrogen inputs to US watersheds: comparison of methodologies. Environ Sci Technol 47(10):5199–5207CrossRefGoogle Scholar
  33. Howarth RW, Marino R (2006) Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: evolving views over three decades. Limnol Oceanogr 51(1part2):364–376CrossRefGoogle Scholar
  34. Howarth RW, Billen G, Swaney D, Townsend A, Jaworski N, Lajtha K, Downing JA, Elmgren R, Caraco N, Jordan T (1996) Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: natural and human influences. Biogeochemistry 35(1):75–139CrossRefGoogle Scholar
  35. Howarth RW, Swaney D, Billen G, Garnier J, Hong B, Humborg C, Marino R (2012) Nitrogen fluxes from the landscape are controlled by net anthropogenic nitrogen inputs and by climate. Front Ecol Environ 10(1):37–43CrossRefGoogle Scholar
  36. ISTAT (Italian National Institute of Statistics) (2010)
  37. Jeppesen E, Brucet S, Naselli-Flores L, Papastergiadou E, Stefanidis K, Noges T, Noges P, Attayde JL, Zohary T, Coppens J, Bucak T, Menezes RF, Sousa Freitas FR, Kernan M, Søndergaard M, Beklioglu M (2015) Ecological impacts of global warming and water abstraction on lakes and reservoirs due to changes in water level and related changes in salinity. Hydrobiologia 750(1):201–227CrossRefGoogle Scholar
  38. Jones DB (1941) Factors for converting percentages of nitrogen in foods and feeds into percentages of proteins. US Department of Agriculture, Washington, DC, pp 1–22Google Scholar
  39. Kraemer BM, Anneville O, Chandra S, Dix M, Kuusisto E, Livingstone DM, Rimmer A, Schladow SG, Silow E, Sitoki LM, Tamatamah R, Vadeboncoeur Y, McIntyre PB (2015) Morphometry and average temperature affect lake stratification responses to climate change. Geophys Res Lett 42(12):4981–4988CrossRefGoogle Scholar
  40. Lassaletta L, Romero E, Billen G, Garnier J, García-Gómez H, Rovira JV (2012) Spatialized N budgets in a large agricultural Mediterranean watershed: high loading and low transfer. Biogeosciences 9(1):57–70CrossRefGoogle Scholar
  41. Lehmann MF, Simona M, Wyss S, Blees J, Frame CH, Niemann H, Veronesi M, Zopfi J (2015) Powering up the “biogeochemical engine”: the impact of exceptional ventilation of a deep meromictic lake on the lacustrine redox, nutrient, and methane balances. Front Earth Sci 3:45CrossRefGoogle Scholar
  42. Lombardy Region (2003) Regional plan for water protection Attachment 7 Available via 7 - Stima dei carichi effettivi di azoto e fosforo da agricoltura nelle acque di superficie
  43. Matthews DA, Effler SW, Driscoll CT, O’Donnell SM, Matthews CM (2008) Electron budgets for the hypolimnion of a recovering urban lake, 1989–2004: response to changes in organic carbon deposition and availability of electron acceptors. Limnol Oceanogr 53(2):743–759CrossRefGoogle Scholar
  44. McCarthy MJ, Gardner WS, Lehmann MF, Guindon A, Bird DF (2016) Benthic nitrogen regeneration, fixation, and denitrification in a temperate, eutrophic lake: effects on the nitrogen budget and cyanobacteria blooms. Limnol Oceanogr 61:1406–1423CrossRefGoogle Scholar
  45. Mengis M, Gächter R, Wehrli B, Bernasconi S (1997) Nitrogen elimination in two deep eutrophic lakes. Limnol Oceanogr 42(7):1530–1543CrossRefGoogle Scholar
  46. Misselbrook TH, Sutton MA, Scholefield D (2004) A simple process-based model for estimating ammonia emissions from agricultural land after fertilizer applications. Soil Use Manag 20(4):365–372CrossRefGoogle Scholar
  47. Moss B, Kosten S, Meerhoff M, Battarbee RW, Jeppesen E, MazzeoN Havens K, Lacerot G, Liu L, De Meester L, Paerl H, Scheffer M (2011) Allied attack: climate change and eutrophication. Inland Waters 1:101–105CrossRefGoogle Scholar
  48. Nielsen LP (1992) Denitrification in sediment determined from nitrogen isotope pairing. FEMS FEMS Microbiol Lett 86(4):357–362CrossRefGoogle Scholar
  49. Nizzoli D, Carraro E, Nigro V, Viaroli P (2010) Effect of organic enrichment and thermal regime on denitrification and dissimilatory nitrate reduction to ammonium (DNRA) in hypolimnetic sediments of two lowland lakes. Water Res 44(9):2715–2724CrossRefGoogle Scholar
  50. Nizzoli D, Welsh DT, Longhi D, Viaroli P (2014) Influence of Potamogeton pectinatus and microphytobenthos on benthic metabolism, nutrient fluxes and denitrification in a freshwater littoral sediment in an agricultural landscape: N assimilation versus N removal. Hydrobiologia 737(1):183–200CrossRefGoogle Scholar
  51. Oenema O, Kros H, de Vries W (2003) Approaches and uncertainties in nutrient budgets: implications for nutrient management and environmental policies. Eur J Agron 20(1–2):3CrossRefGoogle Scholar
  52. Pina-Ochoa E, Álvarez-Cobelas M (2006) Denitrification in aquatic environments: a cross-system analysis. Biogeochemistry 81(1):111–130CrossRefGoogle Scholar
  53. Quilbé R, Rousseau AN, Duchemin M, Poulin A, Gangbazo G, Villeneuve JP (2006) Selecting a calculation method to estimate sediment and nutrient loads in streams: application to the Beaurivage River (Québec, Canada). J Hydrol 326(1):295–310CrossRefGoogle Scholar
  54. Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  55. Rempfer J, Livingstone DM, Blodau C, Forster R, Niederhauser P, Kipfer R (2010) The effect of the exceptionally mild European winter of 2006–2007 on temperature and oxygen profiles in lakes in Switzerland: a foretaste of the future? Limnol Oceanogr 55(5):2170–2180CrossRefGoogle Scholar
  56. Revsbech NP, Risgaard-Petersen N, Schramm A, Nielsen LP (2006) Nitrogen transformations in stratified aquatic microbial ecosystems. Antonie Van Leeuwenhoek 90(4):361–375CrossRefGoogle Scholar
  57. Risgaard-Petersen N, Rysgaard S (1995) Nitrate reduction in sediments and waterlogged soil measured by 15N techniques. Methods in applied soil microbiology. Academic Press, London, pp 1–13Google Scholar
  58. Risgaard-Petersen N, Nielsen LP, Rysgaard S, Dalsgaard T, Meyer RL (2003) Application of the isotope pairing technique in sediments where anammox and denitrification coexist. Limnol Oceanogr Methods 1(1):63–73CrossRefGoogle Scholar
  59. Rissanen AJ, Tiirola M, Hietanen S, Ojala A (2013) Interlake variation and environmental controls of denitrification across different geographical scales. Aquat Microb Ecol 69(1):1–16CrossRefGoogle Scholar
  60. Rogora M, Mosello R, Arisci S, Brizzio MC, Barbieri A, Balestrini R, Waldner P, Schmitt M, Stähli M, Thimonier A, Kalina M, Puxbaum H, Nickus U, Ulrich E, Probst A (2006) An overview of atmospheric deposition chemistry over the Alps: present status and long-term trends. Hydrobiologia 562(1):17–40CrossRefGoogle Scholar
  61. R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  62. Salmaso N, Buzzi F, Cerasino L, Garibaldi L, Leoni B, Morabito G, Rogora M, Simona M (2014) Influence of atmospheric modes of variability on the limnological characteristics of large lakes south of the Alps: a new emerging paradigm. Hydrobiologia 731(1):31–48CrossRefGoogle Scholar
  63. Saunders DL, Kalff J (2001) Denitrification rates in the sediments of Lake Memphremagog, Canada–USA. Water Res 35(8):1897–1904CrossRefGoogle Scholar
  64. Schubert CJ, Durisch-Kaiser E, Wehrli B, Thamdrup B, Lam P, Kuypers MM (2006) Anaerobic ammonium oxidation in a tropical freshwater system (Lake Tanganyika). Environ Microbiol 8(10):1857–1863CrossRefGoogle Scholar
  65. Seitzinger S, Harrison JA, Böhlke JK, Bouwman AF, Lowrance R, Peterson B, Tobias C, Van Drecht G (2006) Denitrification across landscapes and waterscapes: a synthesis. Ecol Appl 16(6):2064–2090CrossRefGoogle Scholar
  66. Small GE, Cotner JB, Finlay JC, Stark RA, Sterner RW (2014) Nitrogen transformations at the sediment–water interface across redox gradients in the Laurentian Great Lakes. Hydrobiologia 731(1):95–108CrossRefGoogle Scholar
  67. Soana E, Racchetti E, Laini A, Bartoli M, Viaroli P (2011) Soil budget, net export, and potential sinks of nitrogen in the Lower Oglio River Watershed (Northern Italy). CLEAN 39(11):956–965Google Scholar
  68. Valderrama JC (1981) The simultaneous analysis of total nitrogen and total phosphorus in natural waters. Mar Chem 10(2):109–122CrossRefGoogle Scholar
  69. Wenk CB, Zopfi J, Gardner WS, McCarthy MJ, Niemann H, Veronesi M, Lehmann MF (2014) Partitioning between benthic and pelagic nitrate reduction in the Lake Lugano south basin. Limnol Oceanogr 59(4):1421–1433CrossRefGoogle Scholar
  70. Yan X, Cai Z, Yang R, Ti C, Xia Y, Li F, Wang J, Ma A (2011) Nitrogen budget and riverine nitrogen output in a rice paddy dominated agricultural watershed in eastern China. Biogeochemistry 106(3):489–501CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly
  2. 2.Klaipeda UniversityKlaipedaLithuania
  3. 3.Department of Life Sciences and BiotechnologyUniversity of FerraraFerraraItaly

Personalised recommendations