Advertisement

Biogeochemistry

, Volume 136, Issue 2, pp 223–236 | Cite as

Nutrient addition affects net and gross mineralization of phosphorus in the organic layer of a tropical montane forest

  • Karla Dietrich
  • Marie Spohn
  • Miguel Villamagua
  • Yvonne Oelmann
Article

Abstract

In tropical ecosystems with highly weathered soils, transformation of organic phosphorus (P) to bioavailable inorganic P plays a crucial role for the nutrition of organisms. In these ecosystems, P is suspected to be growth-limiting and might therefore be affected by atmospheric nutrient deposition occurring even in remote areas such as montane rainforests. We assessed effects of P and nitrogen (N) addition on net and gross P mineralization rates, and microbial P immobilization in the organic layer along an altitudinal gradient of a tropical montane rainforest in Ecuador. Net P mineralization rates amounted to 1.8 ± 0.9 (at 1000 m a.s.l.), 3.7 ± 0.6 (at 2000 m) and 2.0 ± 0.4 (at 3000 m) mg P kg−1 day−1. Altitudinal differences led to an increased microbial P immobilization at 1000 m compensating for a higher gross P mineralization. P addition increased net P mineralization rates at 2000 and 3000 m, suggesting a higher P demand at 1000 m. At higher altitudes, P likely was released as a by-product during organic matter decomposition. Gross P mineralization, determined by means of the isotopic dilution approach, could not be calculated for control and N treatments due to rapid microbial P immobilization. For P (+N) treatments, gross P mineralization rates were lowest at the 1000 m site towards the end of the long-term incubation period. Atmospheric P deposition in the tropics might lead to P fertilization effects through direct input as well as through acceleration of P release from organic matter, thereby increasing P availability for organisms.

Keywords

Environmental change Nutrient cycling Organic phosphorus mineralization Phosphorus availability Tropical montane forest 

Notes

Acknowledgements

Financial support was provided by the Deutsche Forschungsgemeinschaft (DFG PAK 823) and the University of Tübingen. We thank the Ministerio de Ambiente del Ecuador for the research permit and Nature and Cultural International (NCI) in Loja and the San Francisco research station. We would like to thank the Laboratory for Radioisotopes (LARI), Georg-August-University Göttingen, for providing technical support and working space. We appreciate very much the support of Emmanuel Münch and Elena Spoeri who kindly assisted in the soil sampling.

References

  1. Achat D, Bakker M, Augusto L, Saur E, Dousseron L, Morel C (2009) Evaluation of the phosphorus status of P-deficient podzols in temperate pine stands: combining isotopic dilution and extraction methods. Biogeochemistry 92(3):183–200CrossRefGoogle Scholar
  2. Achat DL, Bakker MR, Saur E, Pellerin S, Augusto L, Morel C (2010) Quantifying gross mineralizations of P in dead soil organic matter: testing an isotopic dilution method. Geoderma 158(3–4):163–172CrossRefGoogle Scholar
  3. Attiwill PM, Adams MA (1993) Nutrient cycling in forests. New Phytol 124(4):561–582CrossRefGoogle Scholar
  4. Boy J, Rollenbeck R, Valarezo C, Wilcke W (2008) Amazonian biomass burning-derived acid and nutrient deposition in the north Andean montane forest of Ecuador. Glob Biogeochem Cycles 22(4):11CrossRefGoogle Scholar
  5. Bünemann EK (2015) Assessment of gross and net mineralization rates of soil organic phosphorus – A review. Soil Biol Biochem 89:82–98CrossRefGoogle Scholar
  6. Bünemann EK, Marschner P, McNeill AM, McLaughlin MJ (2007) Measuring rates of gross and net mineralisation of organic phosphorus in soils. Soil Biol Biochem 39(4):900–913CrossRefGoogle Scholar
  7. Bünemann EK, Oberson A, Liebisch F, Keller F, Annaheim KE, Huguenin-Elie O, Frossard E (2012) Rapid microbial phosphorus immobilization dominates gross phosphorus fluxes in a grassland soil with low inorganic phosphorus availability. Soil Biol Biochem 51:84–95CrossRefGoogle Scholar
  8. Chen CR, Condron LM, Davis MR, Sherlock RR (2002) Phosphorus dynamics in the rhizosphere of perennial ryegrass (Lolium perenne L.) and radiata pine (Pinus radiata D. Don.). Soil Biol Biochem 34(4):487–499CrossRefGoogle Scholar
  9. Chen CR, Condron LM, Davis MR, Sherlock RR (2003) Seasonal changes in soil phosphorus and associated microbial properties under adjacent grassland and forest in New Zealand. For Ecol Manag 177(1–3):539–557CrossRefGoogle Scholar
  10. Clarholm M (1993) Microbial biomass P, labile P, and acid phosphatase activity in the humus layer of a spruce forest, after repeated additions of fertilizers. Biol Fertil Soils 16(4):287–292CrossRefGoogle Scholar
  11. Dietrich K, Spoeri E, Oelmann Y (2016) Nutrient addition modifies phosphatase activities along an altitudinal gradient in a tropical montane forest in Southern Ecuador. Front Earth Sci 4:12CrossRefGoogle Scholar
  12. Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10(12):1135–1142CrossRefGoogle Scholar
  13. Fardeau JC (1993) Le phosphore assimilable des sols: sa représentation par un modèle fonctionnel à plusieurs compartiments. Agronomie 13(4):317–331CrossRefGoogle Scholar
  14. Fisher JB, Malhi Y, Torres IC, Metcalfe DB, van de Weg MJ, Meir P, Silva-Espejo JE, Huasco WH (2013) Nutrient limitation in rainforests and cloud forests along a 3000-m elevation gradient in the Peruvian Andes. Oecologia 172(3):889–902CrossRefGoogle Scholar
  15. Frossard E, Feller C, Tiessen H, Stewart J, Fardeau J, Morel J (1993) Can an isotopic method allow for the determination of the phosphate-fixing capacity of soils? Commun Soil Sci Plant Anal 24(5–6):367–377CrossRefGoogle Scholar
  16. Graefe S, Hertel D, Leuschner C (2010) N, P and K limitation of fine root growth along an elevation transect in tropical mountain forests. Acta Oecol 36(6):537–542CrossRefGoogle Scholar
  17. Grierson PF, Comerford NB, Jokela EJ (1998) Phosphorus mineralization kinetics and response of microbial phosphorus to drying and rewetting in a Florida Spodosol. Soil Biol Biochem 30(10–11):1323–1331CrossRefGoogle Scholar
  18. Hamer U, Potthast K, Wilcke W, Wullaert H, Valarezo C, Sandmann D, Maraun M, Scheu S, Homeier J (2013) Nutrient additions affecting matter turnover in forest and pasture ecosystems. In: Bendix J, Beck E, Bräuning A, Makeschin F, Mosandl R, Scheu S, Wilcke W (eds) Ecosystem services, biodiversity and environmental change in a tropical mountain ecosystem of South Ecuador. Ecological studies. Springer, Heidelberg, pp 297–313Google Scholar
  19. Hedges LV, Gurevitch J, Curtis PS (1999) The meta-analysis of response ratios in experimental ecology. Ecology 80(4):1150–1156CrossRefGoogle Scholar
  20. Heuck C, Spohn M (2016) Carbon, nitrogen and phosphorus net mineralization in organic horizons of temperate forests: stoichiometry and relations to organic matter quality. Biogeochemistry 131(1):229–242CrossRefGoogle Scholar
  21. Homeier J, Werner F, Gradstein S, Breckle S, Richter M (2008) Potential vegetation and floristic composition of Andean forests in South Ecuador, with a focus on the RBSF. Ecol Stud 198:87CrossRefGoogle Scholar
  22. Homeier J, Breckle S-W, Günter S, Rollenbeck RT, Leuschner C (2010) Tree diversity, forest structure and productivity along altitudinal and topographical gradients in a species-rich Ecuadorian montane rain forest. Biotropica 42(2):140–148CrossRefGoogle Scholar
  23. Homeier J, Hertel D, Camenzind T, Cumbicus NL, Maraun M, Martinson GO, Poma LN, Rillig MC, Sandmann D, Scheu S, Veldkamp E, Wilcke W, Wullaert H, Leuschner C (2012) Tropical Andean forests are highly susceptible to nutrient inputs—rapid effects of experimental N and P addition to an Ecuadorian montane forest. PLoS ONE 7(10):e47128CrossRefGoogle Scholar
  24. Homeier J, Leuschner C, Bräuning A, Cumbicus NL, Hertel D, Martinson GO, Spannl S, Veldkamp E (2013) Effects of nutrient addition on the productivity of montane forests and implications for the carbon cycle. In: Bendix J, Beck E, Bräuning A, Makeschin F, Mosandl R, Scheu S, Wilcke W (eds) Ecosystem services, biodiversity and environmental change in a tropical mountain ecosystem of South Ecuador. Springer, Berlin, pp 315–329CrossRefGoogle Scholar
  25. Illig J, Schatz H, Scheu S, Maraun M (2008) Decomposition and colonization by micro-arthropods of two litter types in a tropical montane rain forest in southern Ecuador. J Trop Ecol 24(2):157–167CrossRefGoogle Scholar
  26. Iost S, Makeschin F, Abiy M, Haubrich F (2008) Biotic soil activities. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of Ecuador. Springer, New York, pp 217–227CrossRefGoogle Scholar
  27. Johnson A, Frizano J, Vann D (2003) Biogeochemical implications of labile phosphorus in forest soils determined by the Hedley fractionation procedure. Oecologia 135(4):487–499CrossRefGoogle Scholar
  28. Kouno K, Tuchiya Y, Ando T (1995) Measurement of soil microbial biomass phosphorus by an anion-exchange membrane method. Soil Biol Biochem 27(10):1353–1357CrossRefGoogle Scholar
  29. Krashevska V, Maraun M, Ruess L, Scheu S (2010) Carbon and nutrient limitation of soil microorganisms and microbial grazers in a tropical montane rain forest. Oikos 119(6):1020–1028CrossRefGoogle Scholar
  30. Krashevska V, Sandmann D, Maraun M, Scheu S (2014) Moderate changes in nutrient input alter tropical microbial and protist communities and belowground linkages. ISME J 8(5):1126–1134CrossRefGoogle Scholar
  31. Lopez-Hernandez D, Brossard M, Frossard E (1998) P-Isotopic exchange values in relation to Po mineralisation in soils with very low P-sorbing capacities. Soil Biol Biochem 30(13):1663–1670CrossRefGoogle Scholar
  32. Marklein AR, Houlton BZ (2012) Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. New Phytol 193(3):696–704CrossRefGoogle Scholar
  33. McGilI WB, Cole CV (1981) Comparative aspects of cycling of organic C, N, S and P through soil organic matter. Geoderma 26:267–286CrossRefGoogle Scholar
  34. McLaughlin MJ, Alston AM, Martin JK (1986) Measurement of phosphorus in the soil microbial biomass—a modified procedure for field soils. Soil Biol Biochem 18(4):437–443CrossRefGoogle Scholar
  35. Moser G, Hertel D, Leuschner C (2007) Altitudinal change in LAI and stand leaf biomass in tropical montane forests: a transect study in Ecuador and a pan-tropical meta-analysis. Ecosystems 10(6):924–935CrossRefGoogle Scholar
  36. Moser G, Leuschner C, Hertel D, Graefe S, Soethe N, Iost S (2011) Elevation effects on the carbon budget of tropical mountain forests (S Ecuador): the role of the belowground compartment. Glob Change Biol 17(6):2211–2226CrossRefGoogle Scholar
  37. Müller C, Bünemann EK (2014) A 33P tracing model for quantifying gross P transformation rates in soil. Soil Biol Biochem 76:218–226CrossRefGoogle Scholar
  38. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403(6772):853–858CrossRefGoogle Scholar
  39. Oehl F, Oberson A, Sinaj S, Frossard E (2001) Organic phosphorus mineralization studies using isotopic dilution techniques. Soil Sci Soc Am J 65(3):780–787CrossRefGoogle Scholar
  40. Olander LP, Vitousek PM (2004) Biological and geochemical sinks for phosphorus in soil from a wet tropical forest. Ecosystems 7(4):404–419CrossRefGoogle Scholar
  41. Peters T, Drobnik T, Meyer H, Rankl M, Richter M, Rollenbeck R, Thies B, Bendix J (2013) Environmental changes affecting the Andes of Ecuador. In: Bendix J, Beck E, Bräuning A, Makeschin F, Mosandl R, Scheu S, Wilcke W (eds) Ecosystem services, biodiversity and environmental change in a tropical mountain ecosystem of South Ecuador. Springer, New York, pp 19–29CrossRefGoogle Scholar
  42. Phoenix GK, Hicks WK, Cinderby S, Kuylenstierna JCI, Stock WD, Dentener FJ, Giller KE, Austin AT, Lefroy RDB, Gimeno BS, Ashmore MR, Ineson P (2006) Atmospheric nitrogen deposition in world biodiversity hotspots: the need for a greater global perspective in assessing N deposition impacts. Glob Change Biol 12(3):470–476CrossRefGoogle Scholar
  43. Röderstein M, Hertel D, Leuschner C (2005) Above- and below-ground litter production in three tropical montane forests in southern Ecuador. J Trop Ecol 21(05):483–492CrossRefGoogle Scholar
  44. Ross DJ, Tate KR, Scott NA, Feltham CW (1999) Land-use change: effects on soil carbon, nitrogen and phosphorus pools and fluxes in three adjacent ecosystems. Soil Biol Biochem 31(6):803–813CrossRefGoogle Scholar
  45. Skujiņš J, Burns R (1976) Extracellular enzymes in soil. Crit Rev Microbiol 4(4):383–421CrossRefGoogle Scholar
  46. Spohn M (2016) Element cycling as driven by stoichiometric homeostasis of soil microorganisms. Basic Appl Ecol 17:471–478CrossRefGoogle Scholar
  47. Spohn M, Kuzyakov Y (2013) Phosphorus mineralization can be driven by microbial need for carbon. Soil Biol Biochem 61:69–75CrossRefGoogle Scholar
  48. Tanner EVJ, Vitousek PM, Cuevas E (1998) Experimental investigation of nutrient limitation of forest growth on wet tropical mountains. Ecology 79(1):10–22CrossRefGoogle Scholar
  49. Velescu A, Valarezo C, Wilcke W (2016) Response of dissolved carbon and nitrogen concentrations to moderate nutrient additions in a tropical montane forest of south Ecuador. Front Earth Sci 4:58CrossRefGoogle Scholar
  50. Vitousek P (1982) Nutrient cycling and nutrient use efficiency. Am Nat 119(4):553–572CrossRefGoogle Scholar
  51. Vitousek PM, Sanford RL Jr (1986) Nutrient cycling in moist tropical forest. Annu Rev Ecol Syst 17:137–167CrossRefGoogle Scholar
  52. Walker TW, Syers JK (1976) The fate of phosphorus during pedogenesis. Geoderma 15(1):1–19CrossRefGoogle Scholar
  53. Wardle DA (1998) A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biol Rev 67(3):321–358CrossRefGoogle Scholar
  54. Wilcke W, Yasin S, Abramowski U, Valarezo C, Zech W (2002) Nutrient storage and turnover in organic layers under tropical montane rain forest in Ecuador. Eur J Soil Sci 53(1):15–27CrossRefGoogle Scholar
  55. Wilcke W, Oelmann Y, Schmitt A, Valarezo C, Zech W, Homeier J (2008) Soil properties and tree growth along an altitudinal transect in Ecuadorian tropical montane forest. J Plant Nutr Soil Sci 171(2):220–230CrossRefGoogle Scholar
  56. Wilcke W, Leimer S, Peters T, Emck P, Rollenbeck R, Trachte K, Valarezo C, Bendix J (2013) The nitrogen cycle of tropical montane forest in Ecuador turns inorganic under environmental change. Glob Biogeochem Cycles 27(4):1194–1204CrossRefGoogle Scholar
  57. Wolf K, Veldkamp E, Homeier J, Martinson GO (2011) Nitrogen availability links forest productivity, soil nitrous oxide and nitric oxide fluxes of a tropical montane forest in southern Ecuador. Glob Biogeochem Cycles. doi: 10.1029/2010GB003876 Google Scholar
  58. WRB IWG (2015) World reference base for soil resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. In: World soil resources reports. FAO, RomeGoogle Scholar
  59. Wullaert H, Homeier J, Valarezo C, Wilcke W (2010) Response of the N and P cycles of an old-growth montane forest in Ecuador to experimental low-level N and P amendments. For Ecol Manag 260(9):1434–1445CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.GeoecologyUniversity of TübingenTübingenGermany
  2. 2.Soil Biogeochemistry, Bayreuth Center of Ecology and Environmental Research (BAYCEER)University of BayreuthBayreuthGermany
  3. 3.Ingeniería AgrícolaUniversidad Nacional de LojaLa ArgeliaEcuador

Personalised recommendations