Biogeochemistry

, Volume 136, Issue 2, pp 167–189 | Cite as

Biological versus geochemical control and environmental change drivers of the base metal budgets of a tropical montane forest in Ecuador during 15 years

  • Wolfgang Wilcke
  • Andre Velescu
  • Sophia Leimer
  • Moritz Bigalke
  • Jens Boy
  • Carlos Valarezo
Article
  • 153 Downloads

Abstract

To assess the susceptibility of the base metal budget of a remote tropical montane forest in Ecuador to environmental change, we determined the extent of biological control of base metal fluxes and explored the impact of atmospheric inputs and precipitation, considered as potential drivers of ecosystem change, on the base metal fluxes. We quantified all major base metal fluxes in a ca. 9.1 ha forested catchment from 1998 to 2013. Mean (±s.d.) annual flux to the soil via throughfall + stemflow + litterfall was 13800 ± 1500 mg m−2 Ca, 19000 ± 1510 mg m−2 K, 4690 ± 619 mg m−2 Mg and 846 ± 592 mg m−2 Na of which 22 ± 6, 45 ± 16, 39 ± 10 and 84 ± 33%, respectively, were leached to below the organic layer. The mineral soil retained 79–94% of this Ca, K and Mg, while Na was released. Weathering rates estimated with three different approaches ranged from not detected (ND) to 504 mg m−2 year−1 Ca, ND-1770 mg m−2 year−1 K, 287–597 mg m−2 year−1 Mg and 403–540 mg m−2 year−1 Na. The size of mainly biologically controlled aboveground fluxes of Ca, K and Mg was 1–2 orders of magnitude larger than that of mainly geochemically controlled fluxes (sorption to soil and weathering). The elemental catchment budgets (total deposition − streamflow) were positive for Ca (574 ± 893 mg m−2) and K (1330 ± 773 mg m−2), negative for Na (−370 ± 1300 mg m−2) and neutral for Mg (1.89 ± 304 mg m−2). Our results demonstrate that biological processes controlled element retention for Ca, K and Mg in the biological part of the ecosystem. This was different for Na, which was mainly released by weathering from the study catchment, while the biological part of the ecosystem was Na-poor. The deposition of base metals was the strongest driver of their budgets suggesting that the base metal cycling of the study ecosystem is susceptible to changing deposition.

Keywords

Alkaline dust deposition Acid deposition Catchment budget Litterfall Stemflow Streamflow Throughfall Weathering rates 

Supplementary material

10533_2017_386_MOESM1_ESM.docx (22 kb)
Supplementary material 1 (DOCX 22 kb)

References

  1. Allen RG (1991) REF-ET reference evapotranspiration calculator. In: Anderson JM, Spencer T (eds) Carbon, nutrient and water balances of tropical rain forest ecosystems subject to disturbance: management implications and research proposals. Man and Biosphere Digest Series 7. UNESCO, Paris, p 95Google Scholar
  2. Balslev H, Øllgaard B (2002) Mapa de vegetación del sur de Ecuador. In: Aguirre M Z, Madsen J E, Cotton E, Balslev H (eds) Botánica Austroecuatoriana. Estudios sobre los recursos vegetales en las provincias de El Oro, Loja y Zamora-Chinchipe. Ediciones Abya-Yala, Quito, Ecuador, pp 51–64Google Scholar
  3. Baribault TW, Kobe RK, Finley AO (2012) Tropical tree growth is correlated with soil phosphorus, potassium, and calcium, though not for legumes. Ecol Monogr 82:189–203CrossRefGoogle Scholar
  4. Beven KJ, Lamb R, Quinn PF, Romanowicz R, Freer J (1995) TOPMODEL. In: Singh VP (ed) Computer Models of Watershed Hydrology. Water Resources Publications, Highlands Ranch, pp 627–668Google Scholar
  5. Bormann FH, Likens GE (1967) Nutrient Cycling. Science 155:424–429CrossRefGoogle Scholar
  6. Bormann BT, Wang D, Bormann FH, Benoit G, April R, Snyder MC (1998) Rapid, plant-induced weathering in an aggrading experimental ecosystem. Biogeochemistry 43:129–155CrossRefGoogle Scholar
  7. Boy J, Wilcke W (2008) Tropical Andean forest derives calcium and magnesium from Saharan dust. Glob Biogeochem Cycle 22:GB1027Google Scholar
  8. Boy J, Rollenbeck R, Valarezo C, Wilcke W (2008a) Amazonian biomass burning-derived acid and nutrient deposition in the north Andean montane forest of Ecuador. Glob Biogeochem Cycle 22:GB4011Google Scholar
  9. Boy J, Valarezo C, Wilcke W (2008b) Water flow paths in soil control element exports in an Andean tropical montane forest. Eur J Soil Sci 59:1209–1227CrossRefGoogle Scholar
  10. Brantley SL, Megonigal JP, Scatena FN, Balogh-Brunstad Z, Barnes RT, Bruns MA, Van Cappellen P, Dontsova K, Hartnett HE, Hartshorn AS, Heimsath A, Herndon E, Jin L, Keller CK, Leake JR, McDowell WH, Meinzer FC, Mozdzer TJ, Petsch S, Pett-Ridge J, Pregitzer KS, Raymond PA, Riebe CS, Shumaker K, Sutton-Grier A, Walter R, Yoo K (2011) Twelve testable hypotheses on the geobiology of weathering. Geobiology 9:140–165Google Scholar
  11. Braun JJ, Ngoupayou JRN, Viers J, Dupre B, Bedimo JPB, Boeglin JL, Robain H, Nyeck B, Freydier R, Nkamdjou LS, Rouiller J, Muller JP (2005) Present weathering rates in a humid tropical watershed: Nsimi, South Cameroon. Geochim Cosmochim Acta 69:357–387CrossRefGoogle Scholar
  12. Breuer L, Windhorst D, Fries A, Wilcke W (2013) Supporting, regulating, and provisioning hydrological services. In: Bendix J, Beck E, Bräuning A, Makeschin F, Scheu S, Wilcke W (eds) Ecosystem services, biodiversity and environmental change in a tropical mountain ecosystem of South Ecuador. Ecological Studies 221. Springer-Verlag, Heidelberg, pp 107–116Google Scholar
  13. Bruijnzeel LA (1991) Nutrient input-output budgets of tropical forest ecosystems: a review. J Trop Ecol 7:1–24CrossRefGoogle Scholar
  14. Bruijnzeel LA (2001) Hydrology of tropical montane cloud forests: a reassessment. Land Use Water Resour Res 1:1–18Google Scholar
  15. Bruijnzeel LA, Hamilton LS (2000) Decision time for cloud forests. IHP Humid Tropics Programme Series, 13. IHP-UNESCO, ParisGoogle Scholar
  16. Clay NA, Yanoviak SP, Kaspari M (2014) Short-term sodium inputs attract microbiodetritivores and their predators. Soil Biol Biochem 75:248–253CrossRefGoogle Scholar
  17. Clay NA, Donoso DA, Kaspari M (2015) Urine as an important source of sodium increases decomposition in an inland but not coastal tropical forest. Oecologia 177:571–579CrossRefGoogle Scholar
  18. Draaijers GPJ, Erisman JW, Spranger T, Wyers GP (1996) The application of throughfall measurements for atmospheric deposition monitoring. Atmos Environ 30:3349–3361CrossRefGoogle Scholar
  19. Dunne T (1978) Rates of chemical denudation of silicate rocks in tropical catchments. Nature 274:244–246CrossRefGoogle Scholar
  20. DVWK (1996) Ermittlung der Verdunstung von Land- und Wasserflächen, DVWK-Merkblätter zur Wasserwirtschaft, Vol. 238, Deutscher Verband für Wasserwirtschaft und Kulturbau (DVWK), Bonn, GermanyGoogle Scholar
  21. Elser JJ, Bracken MES, Cleland EE, Grunder S, Harpole WS, Hillebrandt H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142CrossRefGoogle Scholar
  22. Fay PA, Prober SM, Harpole WS, Knops JMH, Bakker JD, Borer ET, Lind EM, MacDougall AS, Seabloom EW, Wragg PD, Adler PB, Blumenthal DM, Buckley YM, Chu C, Cleland EE, Collins SL, Davies KF, Du GZ, Feng XH, Firn J, Gruner DS, Hagenah N, Hautier Y, Heckman RW, Jin VL, Kirkman KP, Klein J, Ladwig LM, Li Q, McCulley RL, Melbourne BA, Mitchell CE, Moore JL, Morgan JW, Risch AC, Schütz M, Stevens CJ, Wedin DA, Yang LH (2015) Grassland productivity limited by multiple nutrients. Nat Plant 1:15080CrossRefGoogle Scholar
  23. Fisher JB, Malhi Y, Torres IC, Metacalfe DB, van de Weg MJ, Meir P, Silva-Espejo JE, Huasco WH (2013) Nutrient limitation in rainforests and cloud forests along a 3,000-m elevation gradient in the Peruvian Andes. Oecologia 172:889–902CrossRefGoogle Scholar
  24. Fleischbein K, Wilcke W, Goller R, Valarezo C, Zech W, Knoblich K (2005) Rainfall interception in a lower montane forest in Ecuador: effects of canopy properties. Hydrol Proc 19:1355–1371CrossRefGoogle Scholar
  25. Fleischbein K, Wilcke W, Valarezo C, Zech W, Knoblich K (2006) Water budget of three small catchments under montane forest in Ecuador. Hydrol Proc 20:2491–2507CrossRefGoogle Scholar
  26. Gaillardet J, Dupre B, Allegre CJ, Negrel P (1997) Chemical and physical denudation in the Amazon River basin. Chem Geol 142:141–173CrossRefGoogle Scholar
  27. Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892CrossRefGoogle Scholar
  28. Godsey SE, Kirchner JW, Clow DW (2009) Concentration-discharge relationships reflect chemostatic characteristics of US catchments. Hydrol Process 23:1844–1864CrossRefGoogle Scholar
  29. Goller R, Wilcke W, Leng M, Tobschall HJ, Wagner K, Valarezo C, Zech W (2005) Tracing water paths through small catchments under a tropical montane rainforest in south Ecuador by an oxygen isotope approach. J Hydrol 308:67–80CrossRefGoogle Scholar
  30. Harmon RS, Lyons WB, Long DT, Ogden FL, Mitasova H, Gardner CB, Welch KA, Witherow RA (2009) Geochemistry of four tropical montane watersheds, Central Panama. Appl Geochem 24:624–640CrossRefGoogle Scholar
  31. Herndon EM, Der AI, Sullivan PI, Norris D, Reynolds B, Brantley SL (2015) Landscape hetergeneity drives contrasting concentration-discharge relationships in shale headwater catchments. Hydrol Earth Syst Sci 19:3333–3347CrossRefGoogle Scholar
  32. Hill R, Wyse G, Anderson M (2016) Animal physiology. Sinauer Associates, SunderlandGoogle Scholar
  33. Homeier J (2004) Baumdiversität, Waldstruktur und Wachstumsdynamik zweier tropischer Bergregenwälder in Ecuador und Costa Rica. Dissertationes Botanicae 391. J. Cramer, Berlin, GermanyGoogle Scholar
  34. IPCC (2013) Climate Change 2013: The Physical Science Basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, p 1535Google Scholar
  35. IUSS Working Group WRB (2014) World Reference Base for Soil Resources 2014. International soil classification system for naming soils and creating legends for soil maps. World Soil Resource Reports No. 106. FAO, RomeGoogle Scholar
  36. Jemison JM, Fox RH (1992) Estimation of zero-tension pan lysimeter collection efficiency. Soil Sci 154:85–94CrossRefGoogle Scholar
  37. Jia Y, Kong X, Weiser MD, Lv Y, Akbar S, Jia X, Tian K, He Z, Lin H, Bei Z, Tian X (2015) Sodium limits litter decomposition rates in a subtropical forest: additional tests of the sodium ecosystem respiration hypothesis. Appl Soil Ecol 93:98–104CrossRefGoogle Scholar
  38. Jobbagy EG, Jackson RB (2001) The distribution of soil nutrients with depth: global patterns and the imprint of plants. Biogeochemistry 53:51–77CrossRefGoogle Scholar
  39. Jobbagy EG, Jackson RB (2004) The uplift of soil nutrients by plants: biogeochemical consequences across scales. Ecology 85:2380–2389CrossRefGoogle Scholar
  40. Johnson MO, Gloor M, Kirkby MJ, Lloyd J (2014) Insights into biogeochemical cycling from a soil evolution model and long-term chronosequences. Biogeosciences 11:6873–6894CrossRefGoogle Scholar
  41. Jordan CF (1982) The nutrient balance of an Amazonian rainforest. Ecology 64:647–656CrossRefGoogle Scholar
  42. Jordan CF, Golley F, Hall J, Hall J (1980) Nutrient scavenging of rainfall by the canopy of an Amazonian rainforest. Biotropica 12:61–66CrossRefGoogle Scholar
  43. Kaspari M, Yanoviak SP, Dudley R, Yuan M, Clay NA (2009) Sodium shortage as a constraint on the carbon cycle in an inland tropical rainforest. Proc Natl Acad Sci USA 106:19405–19409CrossRefGoogle Scholar
  44. Kaspari M, Clay NA, Donoso DA, Yanoviak SP (2014) Sodium fertilization increases termites and enhances decomposition in an Amazonian forest. Ecology 95:795–800CrossRefGoogle Scholar
  45. LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:379CrossRefGoogle Scholar
  46. Likens GE (2013) Biogeochemistry of a forested ecosystem, 3rd edn. Springer, New YorkCrossRefGoogle Scholar
  47. Lovett GM (1994) Atmospheric deposition of nutrients and pollutants in North America: an ecological perspective. Ecol Appl 4:629–650CrossRefGoogle Scholar
  48. Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, LondonGoogle Scholar
  49. Matson AL, Corre MD, Veldkamp E (2014) Nitrogen cycling in canopy soils of tropical montane forests responds rapidly to indirect N and P fertilization. Glob Change Biol 20:3802–3813CrossRefGoogle Scholar
  50. Matzner E, Zuber T, Alewell C, Lischeid G, Moritz K (2004) Trends in deposition and canopy leaching of mineral elements as indicated by bulk deposition and throughfall measurements. In: Matzner E (ed) Biogeochemistry of forested catchments in a changing environment. Ecological Studies 172. Springer-Verlag, Heidelberg, pp 233–250CrossRefGoogle Scholar
  51. McDowell WH, Asbury CE (1994) Export of carbon, nitrogen, and major ions from three tropical montane watersheds. Limnol Oceanogr 39:111–125CrossRefGoogle Scholar
  52. Messmer T, Elsenbeer H, Wilcke W (2014) High exchangeable calcium concentrations in soils on Barro Colorado Island, Panama. Geoderma 217–218:212–224CrossRefGoogle Scholar
  53. Meunier JD, Kirman S, Strasberg D, Nicolini E, Delcher E, Keller C (2010) The output and bio-cycling of Si in a tropical rain forest developed on young basalt flows (La Reunion Island). Geoderma 159:431–439CrossRefGoogle Scholar
  54. Moulton KL, West AJ, Berner RA (2000) Solute flux and mineral mass balance approaches to the quantification of plant effects on silicate weathering. Am J Sci 300:539–570CrossRefGoogle Scholar
  55. Muhs DR, Bush CA, Stewart KC, Rowland TR, Crittenden RC (1990) Geochemical evidence of Saharan dust parent material for soils developed on quaternary limestones of Caribbean and Western Atlantic Islands. Q Res 33:157–177CrossRefGoogle Scholar
  56. Nadkarni NM, Schaefer DA, Matelson TJ, Solano R (2002) Comparison of arboreal and terrestrial soil characteristics in a lower montane forest, Monteverde, Costa Rica. Pedobiologia 46:24–33CrossRefGoogle Scholar
  57. Parker GG (1983) Throughfall and stemflow in the forest nutrient cycle. Adv Ecol Res 13:57–133CrossRefGoogle Scholar
  58. Peters T, Drobnik T, Meyer H, Rankl M, Richter M, Rollenbeck R, Thies B, Bendix J (2013) Environmental changes affecting the Andes of Ecuador. In: Bendix J, Beck E, Bräuning A, Makeschin F, Mosandl R, Scheu S, Wilcke W (eds) Ecosystem Services, biodiversity and environmental change in a tropical mountain ecosystem of south Ecuador, Ecological Studies 221. Springer, Berlin, pp 19–29Google Scholar
  59. Pett-Ridge JC, Derry LA, Barrows JK (2009) Ca/Sr and 87Sr/86Sr ratios as tracers of Ca and Sr cycling in the Rio Icacos watershed, Luquillo Mountains, Puerto Rico. Chem Geol 267:32–45CrossRefGoogle Scholar
  60. Porder S, Johnson AH, Xing HX, Brocard G, Goldsmith S, Pett-Ridge J (2015) Linking geomorphology, weathering and cation availability in the Luquillo Mountains of Puerto Rico. Geoderma 249:100–110CrossRefGoogle Scholar
  61. Prospero J, Glaccum R, Nees R (1981) Atmospheric transport of soil dust from Africa to South America. Nature 289:570–572CrossRefGoogle Scholar
  62. Riotte J, Maréchal JC, Audry S, Kumar C, Bedimo Bedimo JP, Ruiz L, Sekhar M, Cisel M, Chitra Tarak R, Varma MRR, Lagane C, Reddy P, Braun JJ (2014) Vegetation impact on stream chemical fluxes: mule Hole watershed (South India). Geochim Cosmochim Acta 145:116–138CrossRefGoogle Scholar
  63. Rollenbeck R, Bendix J, Fabian P, Boy J, Dalitz H, Emck P, Oesker M, Wilcke W (2007) Comparison of different techniques for the measurement of precipitation in tropical montane rain forest regions. J Atmos Ocean Tech 24:156–168CrossRefGoogle Scholar
  64. Schrumpf M, Guggenberger G, Schubert C, Valarezo C, Zech W (2001) Tropical montane rain forest soils: development and nutrient status along an altitudinal gradient in the south Ecuadorian Andes. Erde 132:43–59Google Scholar
  65. Soethe N, Lehmann J, Engels C (2006) The vertical pattern of rooting and nutrient uptake at different altitudes of a south Ecuadorian montane forest. Plant Soil 286:287–299CrossRefGoogle Scholar
  66. Staelens J, Houle D, Schrijver A, Neirynck J, Verheyen K (2008) Calculating dry deposition and canopy exchange with the canopy budget model: review of assumptions and application to two deciduous forests. Water Air Soil Pollut 191:149–169CrossRefGoogle Scholar
  67. Stallard RF (2012) Chapter H: Weathering, landscape equilibrium, and carbon in four watersheds in eastern Puerto Rico. In: Murphy SF, Stallard RF (eds) Water quality and landscape processes of four watersheds in eastern Puerto Rico. U.S. Geological Survey Professional Paper 1789:199–247Google Scholar
  68. Stoorvogel JJ, Janssen BH, Van Breemen N (1997) The nutrient budgets of a watershed and its forest ecosystem in the Taï National Park in Côte d’Ivoire. Biogeochemistry 37:159–172CrossRefGoogle Scholar
  69. Talkner U, Krämer I, Hölscher D, Beese FO (2010) Deposition and canopy exchange processes in central-German beech forests differing in tree species diversity. Plant Soil 336:405–420CrossRefGoogle Scholar
  70. Tan K (1996) Soil sampling, preparation, and analysis. Marcel Dekker, New York, p 408Google Scholar
  71. Taylor LL, Banwart SA, Valdes PJ, Leake JR, Beerling DJ (2012) Evaluating the effects of terrestrial ecosystems, climate and carbon dioxide on weathering over geological time: a global-scale process-based approach. Phil Trans R Soc B 367:565–582CrossRefGoogle Scholar
  72. Thomas J, Apte SK (1984) Sodium requirement and metabolism in nitrogen-fixing cynobacteria. J Biosci 6:771–794CrossRefGoogle Scholar
  73. Torres MA, West AJ, Clark KE (2015) Geomorphic regime modulates hydrologic control of chemical weathering in the Andes-Amazon. Geochim Cosmochim Acta 166:105–128CrossRefGoogle Scholar
  74. Ulrich B (1983) Interactions of forest canopies with atmospheric constituents: SO2, alkali and earth alkali cations and chloride. In: Ulrich B, Pankrath J (eds) Effects of accumulation of air pollutants in forest ecosystems. D. Reidel Publishing, Dordrecht, pp 33–45CrossRefGoogle Scholar
  75. Velescu A, Valarezo C, Wilcke W (2016) Response of dissolved organic matter to moderate N, P, N + P and Ca amendments in a tropical montane forest of south Ecuador. Front Earth Sci 4:58CrossRefGoogle Scholar
  76. Vogt KA, Grier CC, Vogt DJ (1986) Production, turnover, and nutrient dynamics of above- and belowground detritus of world forests. Adv Ecol Res 15:303–377CrossRefGoogle Scholar
  77. Wilcke W, Yasin S, Valarezo C, Zech W (2001) Change in water quality during the passage through a tropical montane rain forest in Ecuador. Biogeochemistry 55:45–72CrossRefGoogle Scholar
  78. Wilcke W, Yasin S, Abramowski U, Valarezo C, Zech W (2002) Nutrient storage and turnover in organic layers under tropical montane rain forest in Ecuador. Eur J Soil Sci 53:15–27CrossRefGoogle Scholar
  79. Wilcke W, Hess T, Bengel C, Homeier J, Valarezo C, Zech W (2005) Coarse woody debris in a montane forest in Ecuador: mass, C and nutrient stock, and turnover. For Ecol Manage 205:139–147CrossRefGoogle Scholar
  80. Wilcke W, Yasin S, Fleischbein K, Goller R, Boy J, Knuth J, Valarezo C, Zech W (2008) Nutrient status and fluxes at the field and catchment scale. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of Ecuador. Ecological studies 198, Springer-Verlag, Heidelberg, Germany, pp 203–215Google Scholar
  81. Wilcke W, Boy J, Goller R, Fleischbein K, Valarezo C, Zech W (2010) Effect of topography on soil fertility and water flow in an Ecuadorian lower montane forest. In: Bruijnzeel LA, Scatena FN, Hamilton LS (eds) Tropical montane cloud forests: science for conservation and management. Cambridge University Press, Cambridge, pp 402–409Google Scholar
  82. Wilcke W, Boy J, Hamer U, Potthast K, Rollenbeck R, Valarezo C (2013a) Current regulating and supporting services: Nutrient cycles. In: Bendix J, Beck E, Bräuning A, Makeschin F, Scheu S, Wilcke W (eds) Ecosystem services, biodiversity and environmental change in a tropical mountain ecosystem of South Ecuador. Ecological Studies 221, Springer-Verlag, Heidelberg, pp 141–151Google Scholar
  83. Wilcke W, Leimer S, Peters T, Emck P, Rollenbeck R, Trachte K, Valarezo C, Bendix J (2013b) The nitrogen cycle of tropical montane forest in Ecuador turns inorganic under environmental change. Glob Biogeochem Cycle 27:1194–1204CrossRefGoogle Scholar
  84. Wright SJ, Yavitt JB, Wurzburger N, Turner BL, Tanner EVJ, Sayer EJ, Santiago LS, Kaspari M, Hedin LO, Harms KE, Garcia MN, Corre MD (2011) Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest. Ecology 92:1616–1625CrossRefGoogle Scholar
  85. Wullaert H, Pohlert T, Boy J, Valarezo C, Wilcke W (2009) Spatial throughfall heterogeneity in a montane rain forest in Ecuador: extent, temporal stability and drivers. J Hydrol 377:71–79CrossRefGoogle Scholar
  86. Wullaert H, Bigalke M, Homeier J, Cumbicus NL, Valarezo C, Wilcke W (2013) Short-term response of the Ca cycle of a montane forest in Ecuador to low experimental CaCl2 additions. J Plant Nutr Soil Sci 176:892–903CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Geography and GeoecologyKarlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Institute of GeographyUniversity of BernBerneSwitzerland
  3. 3.Institute of Soil ScienceLeibniz University HannoverHannoverGermany
  4. 4.Research Directorate, Ciudadela Universitaria Guillermo FalconíNational University of LojaLojaEcuador

Personalised recommendations