, Volume 135, Issue 3, pp 293–306 | Cite as

Dissolved organic matter retention in volcanic soils with contrasting mineralogy: a column sorption experiment

  • Jonathan Sanderman
  • Marc G. Kramer


There is an increasing recognition that sorption and precipitation reactions between the dissolved phase of organic matter and reactive minerals and metals found in soils are an important carbon stabilization mechanism. We explored the relative importance of this sorption mechanism with pedological shifts in soil properties by conducting a dissolved organic matter leaching/sorption experiment using intact soil cores from a substrate/age gradient in Hawai’i. In the subsurface horizons, sorption of dissolved organic carbon was often positively correlated short-range ordered (SRO) mineral content, with sorption rates approaching 100% when SRO minerals dominated. Dissolved organic matter sorption in the presence of SRO minerals was highly selective towards aromatic compounds, consistent with prior nuclear magnetic resonance spectroscopy conducted on carbon found in SRO rich mineral soil. In subsurface horizons where SRO content was low (youngest and oldest sites in the chronosequence), sorption was also found to be high but much less selective, more reversible and more degradable indicating that different stabilization mechanisms are operative. These experimental results provide further evidence for a direct mechanism by which volcanic soils are able to store disproportionately high amount of soil organic matter via retention of aromatic acids.


Soil carbon Short range ordered minerals Hawai’i Organo-mineral association Organic acids 



Funding for this study was provided to MGK from USDA National Research Initiative Grant No. 2007-35107-18429. We are appreciative to Russell Johnson for laboratory support and to Payton Gardner for discussions on interpreting the tracer experiment.

Supplementary material

10533_2017_374_MOESM1_ESM.pdf (315 kb)
Supplementary material 1 (PDF 314 kb)


  1. Arnarson TS, Keil RG (2000) Mechanisms of pore water organic matter adsorption to montmorillonite. Mar Chem 71:309–320CrossRefGoogle Scholar
  2. Bachmann J et al (2008) Physical carbon-sequestration mechanisms under special consideration of soil wettability. J Plant Nutr Soil Sci 171:14–26. doi: 10.1002/jpln.200700054 CrossRefGoogle Scholar
  3. Basile-Doelsch I et al (2005) Mineralogical control of organic carbon dynamics in a volcanic ash soil on La Reunion. Eur J Soil Sci 56:689–703. doi: 10.1111/j.1365-2389.2005.00703.x Google Scholar
  4. Bond-Lamberty B, Thomson A (2010) A global database of soil respiration data. Biogeosciences 7:1915–1926. doi: 10.5194/bg-7-1915-2010 CrossRefGoogle Scholar
  5. Buurman P (1985) Carbon sesquioxide ratios in organic-complexes and the transition albic spodic horizon. J Soil Sci 36:255–260CrossRefGoogle Scholar
  6. Chadwick OA, Chorover J (2001) The chemistry of pedogenic thresholds. Geoderma 100:321–353CrossRefGoogle Scholar
  7. Chadwick OA, Gavenda RT, Kelly EF, Ziegler K, Olson CG, Elliott WC, Hendricks DM (2003) The impact of climate on the biogeochemical functioning of volcanic soils. Chem Geol 202:195–223. doi: 10.1016/j.chemgeo.2002.09.001 CrossRefGoogle Scholar
  8. Chorover J, DiChiaro MJ, Chadwick OA (1999) Structural charge and cesium retention in a chronosequence of tephritic soils. Soil Sci Soc Am J 63:169–177CrossRefGoogle Scholar
  9. Chorover J, Amistadi MK, Chadwick OA (2004) Surface charge evolution of mineral-organic complexes during pedogenesis in Hawaiian basalt. Geochimica Et Cosmochimica Acta 68:4859–4876. doi: 10.1016/j.gca.2004.06.005 CrossRefGoogle Scholar
  10. Ekschmitt K et al (2008) Soil-carbon preservation through habitat constraints and biological limitations on decomposer activity. J Plant Nutr Soil Sci 171:27–35. doi: 10.1002/jpln.200700051 CrossRefGoogle Scholar
  11. Evans A, Zelazny LW, Zipper CE (1988) Solution parameters influencing dissolved organic-carbon levels in 3 forest soils. Soil Sci Soc Am J 52:1789–1792CrossRefGoogle Scholar
  12. Feng XJ, Simpson AJ, Simpson MJ (2005) Chemical and mineralogical controls on humic acid sorption to clay mineral surfaces. Org Geochem 36:1553–1566. doi: 10.1016/j.orggeochem.2005.06.008 CrossRefGoogle Scholar
  13. Heimann M, Reichstein M (2008) Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451:289–292. doi: 10.1038/nature06591 CrossRefGoogle Scholar
  14. Kaiser K, Guggenberger G (2000) The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils. Org Geochem 31:711–725CrossRefGoogle Scholar
  15. Kalbitz K, Kaiser K (2008) Contribution of dissolved organic matter to carbon storage in forest mineral soils. J Plant Nutr Soil Sci 171:52–60. doi: 10.1002/jpln.200700043 CrossRefGoogle Scholar
  16. Keiluweit M, Kleber M (2009) Molecular-level interactions in soils and sediments: the role of aromatic pi-systems. Environ Sci Technol 43:3421–3429. doi: 10.1021/es8033044 CrossRefGoogle Scholar
  17. Kleber M, Mikutta R, Torn MS, Jahn R (2005) Poorly crystalline mineral phases protect organic matter in acid subsoil horizons. Eur J Soil Sci 56:717–725. doi: 10.1111/j.1365-2389.2005.00706.x Google Scholar
  18. Kogel-Knabner I, Ekschmitt K, Flessa H, Guggenberger G, Matzner E, Marschner B, von Luetzow M (2008) An integrative approach of organic matter stabilization in temperate soils: linking chemistry, physics, and biology. J Plant Nutr Soil Sci 171:5–13. doi: 10.1002/jpln.200700215 CrossRefGoogle Scholar
  19. Kothawala DN, Moore TR, Hendershot WH (2009) Soil properties controlling the adsorption of dissolved organic carbon to mineral soils. Soil Sci Soc Am J 73:1831–1842. doi: 10.2136/sssaj2008.0254 CrossRefGoogle Scholar
  20. Kramer MG, Sanderman J, Chadwick OA, Chorover J, Vitousek PM (2012) Long-term carbon storage through retention of dissolved aromatic acids by reactive particles in soil. Glob Change Biol 18:2594–2605. doi: 10.1111/j.1365-2486.2012.02681.x CrossRefGoogle Scholar
  21. Lohse KA, Dietrich WE (2005) Contrasting effects of soil development on hydrological properties and flow paths. Water Resour Res 41:W12419. doi: 10.1029/2004wr003403 CrossRefGoogle Scholar
  22. Marin-Spiotta E, Chadwick OA, Kramer M, Carbone MS (2011) Carbon delivery to deep mineral horizons in Hawaiian rain forest soils. J Geophys Res-Biogeosci 116:G03011. doi: 10.1029/2010jg001587 CrossRefGoogle Scholar
  23. Masiello CA, Chadwick OA, Southon J, Torn MS, Harden JW (2004) Weathering controls on mechanisms of carbon storage in grassland soils. Global Biogeochem Cycles. doi: 10.1029/2004gb002219 Google Scholar
  24. Michalzik B et al (2003) Modelling the production and transport of dissolved organic carbon in forest soils. Biogeochemistry 66:241–264CrossRefGoogle Scholar
  25. Mikutta R, Mikutta C, Kalbitz K, Scheel T, Kaiser K, Jahn R (2007) Biodegradation of forest floor organic matter bound to minerals via different binding mechanisms. Geochimica Et Cosmochimica Acta 71:2569–2590. doi: 10.1016/j.gca.2007.03.002 CrossRefGoogle Scholar
  26. Mikutta R et al (2009) Biogeochemistry of mineral-organic associations across a long-term mineralogical soil gradient (0.3-4100 kyr), Hawaiian Islands. Geochimica Et Cosmochimica Acta 73:2034–2060. doi: 10.1016/j.gca.2008.12.028 CrossRefGoogle Scholar
  27. Neff JC, Hobbie SE, Vitousek PM (2000) Nutrient and mineralogical control on dissolved organic C, N and P fluxes and stoichiometry in Hawaiian soils. Biogeochemistry 51:283–302CrossRefGoogle Scholar
  28. Nodvin SC, Driscoll CT, Likens GE (1986) Simple partitioning of anions and dissolved organic-carbon in a forest soil. Soil Sci 142:27–35CrossRefGoogle Scholar
  29. Sanderman J, Baldock JA, Amundson R (2008) Dissolved organic carbon chemistry and dynamics in contrasting forest and grassland soils. Biogeochemistry 89:181–198. doi: 10.1007/s10533-008-9211-x CrossRefGoogle Scholar
  30. Sanderman J, Amundson R (2009) A comparative study of dissolved organic carbon transport and stabilization in California forest and grassland soils. Biogeochemistry 92:41–59. doi: 10.1007/s10533-008-9249-9 CrossRefGoogle Scholar
  31. Sanderman J, Kramer MG (2013) Differential production yet chemical similarity of dissolved organic matter across a chronosequence with contrasting nutrient availability in Hawaii. Biogeochemistry 113:259–269. doi: 10.1007/s10533-012-9821-1 CrossRefGoogle Scholar
  32. Scheel T, Dorfler C, Kalbitz K (2007) Precipitation of dissolved organic matter by aluminum stabilizes carbon in acidic forest soils. Soil Sci Soc Am J 71:64–74. doi: 10.2136/sssaj2006.0111 Google Scholar
  33. Scheel T, Haumaier L, Ellerbrock RH, Ruhlmann J, Kalbitz K (2008) Properties of organic matter precipitated from acidic forest soil solutions. Org Geochem 39:1439–1453. doi: 10.1016/j.orggeochem.2008.06.007 CrossRefGoogle Scholar
  34. Schmidt MWI et al (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56CrossRefGoogle Scholar
  35. Schoenberger PJ, Wysocki DA, Benham EC, Broderosn WD (2002) Field book for describing and sampling soils. version 2.0. National Soil Survey Center, Lincoln, NEGoogle Scholar
  36. Skjemstad JO, Clarke P, Taylor JA, Oades JM, McClure SG (1996) The chemistry and nature of protected carbon in soil. Aust J Soil Res 34:251–271CrossRefGoogle Scholar
  37. Sposito G (1989) The chemistry of soils. Oxford University Press, New YorkGoogle Scholar
  38. Sutton R, Sposito G (2006) Molecular simulation of humic substance-Ca-montmorillonite complexes. Geochim Cosmochim Acta 70:3566–3581. doi: 10.1016/j.gca.2006.04.032 CrossRefGoogle Scholar
  39. Torn MS, Trumbore SE, Chadwick OA, Vitousek PM, Hendricks DM (1997) Mineral control of soil organic carbon storage and turnover. Nature 389:170–173CrossRefGoogle Scholar
  40. Ussiri DAN, Johnson CE (2004) Sorption of organic carbon fractions by Spodosol mineral horizons. Soil Sci Soc Am J 68:253–262CrossRefGoogle Scholar
  41. Vance GF, David MB (1989) Effect of acid treatment on dissolved organic-carbon retention by a spodic horizon. Soil Sci Soc Am J 53:1242–1247CrossRefGoogle Scholar
  42. Vanloosdrecht MCM, Lyklema J, Norde W, Zehnder AJB (1990) Influence of interfaces on microbial activity. Microbiol Rev 54:75–87Google Scholar
  43. Veldkamp E (1994) Organic-carbon turnover in 3 tropical soils under pasture after deforestation. Soil Sci Soc Am J 58:175–180CrossRefGoogle Scholar
  44. Vitousek PM (2004) Nutrient cycling and limitation: Hawai’i as a model ecosystem. Princeton University Press, PrincetonGoogle Scholar
  45. Vitousek PM, Chadwick OA, Crews TE, Fownes JH, Hendricks DM, Herbert D (1997) Soil and ecosystem development across the Hawaiian islands. GSA Today 7(9):1–8Google Scholar
  46. Wagai R, Mayer LM (2007) Sorptive stabilization of organic matter in soils by hydrous iron oxides. Geochimica Et Cosmochimica Acta 71:25–35. doi: 10.1016/j.gca.2006.08.047 CrossRefGoogle Scholar
  47. Weishaar JL, Aiken GR, Bergamaschi BA, Fram MS, Fujii R, Mopper K (2003) Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ Sci Technol 37:4702–4708. doi: 10.1021/es030360x CrossRefGoogle Scholar
  48. Zimmerman AR, Chorover J, Goyne KW, Brantley SL (2004) Protection of mesopore-adsorbed organic matter from enzymatic degradation. Environ Sci Technol 38:4542–4548. doi: 10.1021/es035340+ CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Woods Hole Research CenterFalmouthUSA
  2. 2.Washington State UniversityVancouverUSA

Personalised recommendations