Advertisement

Biogeochemistry

, Volume 134, Issue 3, pp 279–299 | Cite as

Icelandic grasslands as long-term C sinks under elevated organic N inputs

  • Niki I. W. Leblans
  • Bjarni D. Sigurdsson
  • Rien Aerts
  • Sara Vicca
  • Borgthór Magnússon
  • Ivan A. Janssens
Article
  • 203 Downloads

Abstract

About 10% of the anthropogenic CO2 emissions have been absorbed by northern terrestrial ecosystems during the past decades. It has been hypothesized that part of this increasing carbon (C) sink is caused by the alleviation of nitrogen (N) limitation by increasing anthropogenic N inputs. However, little is known about this N-dependent C sink. Here, we studied the effect of chronic seabird-derived N inputs (47–67 kg N ha−1 year−1) on the net soil organic C (SOC) storage rate of unmanaged Icelandic grasslands on the volcanic Vestmannaeyjar archipelago by using a stock change approach in combination with soil dating. We studied both early developmental (young) soils that had been receiving increased N inputs over a decadal timescale since an eruption in 1963, and well-developed soils, that had been receiving N inputs over a millennial timescale. For the latter, however, the effects on both decadal (topsoil; 40 years) and millennial (total soil profile; 1600 years) SOC storage could be studied, as the age of topsoil and the total soil profile could be determined from volcanic ash layers deposited in 1973 and 395 AD. We found that enhanced N availability—either from accumulation over time, or seabird derived—increased the net SOC storage rate. Under low N inputs, early developmental soils were weak decadal C sinks (0.018 ton SOC ha−1 year−1), but this increased quickly under ca. 30 years of elevated N inputs to 0.29 ton SOC ha−1 year−1, thereby equalling the decadal SOC storage rate of the unfertilized well-developed soils. Furthermore, for the well-developed soils, chronically elevated N inputs not only stimulated the decadal SOC storage rate in the topsoil, but also the total millennial SOC storage was consistently higher. Hence, our study suggests that Icelandic grasslands, if not disturbed, can remain C sinks for many centuries under current climatic conditions and that chronically elevated N inputs can induce a permanent strengthening of this sink.

Keywords

Terrestrial C sink N inputs Long-term carbon storage Soil development Surtsey 

Notes

Acknowledgements

This research was supported by the Research Foundation—Flanders (FWO aspirant grant to NL; FWO postdoctoral fellowship to SV), the European Research Council Synergy grant 610028 (IMBALANCE-P), and the Research Council of the University of Antwerp. We acknowledge support from FSC-Sink, CAR-ES and the ClimMani COST Action E1308. The Surtsey Research Society, Institute of Natural History, Mogilsá—Icelandic Forest Research, Reykir and Keldnaholt—Agricultural University of Iceland and the Icelandic Coastguard provided logistical support for the present study. We thank Sturla Fridriksson, Sigurdur Magnússon and Erling Ólafsson for generously providing access to their data. We are grateful to Anette Th. Meier for designing the map. We thank Annemie Vinck, Paul Leblans, Pieter Roefs, Rafaële Thuys, Elín Guðmundsdóttir, Elías Óskarsson, Sigurður Sturla Bjarnasson, Hekla Hrund Bjarnadóttir, Alexander Meire, Damiano Cillio, Linde Leblans and Dries De Pauw for their helping hands in the field. Further, we thank Brita Berglund, Baldur Vigfusson, Nadine Calluy, Marijke Van den Bruel and Els Oosterbos for their assistance with the lab analyses.

Author’s contribution

B.D. Sigurdsson, B. Magnússon, N.I.W. Leblans and I.A. Janssens designed the study and N.I.W. Leblans and B.D. Sigurdsson carried it out. N.I.W. Leblans prepared the manuscript with contributions from all co-authors.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10533_2017_362_MOESM1_ESM.docx (181 kb)
Supplementary material 1 (DOCX 180 kb)

References

  1. Aerts R, Chapin FS (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. In: Fitter AH, Raffaelli DG (eds) Advances in ecological research, vol 30. Elsevier Academic Press Inc., San Diego, pp 1–67Google Scholar
  2. Aerts R, Bakker C, Decaluwe H (1992) Root turnover as determinatn of the cycling of C, N and P in a dry heathland ecosystem. Biogeochemistry 15(3):175–190CrossRefGoogle Scholar
  3. Aerts R, De Caluwe H, Beltman B (2003) Plant community mediated vs. nutritional controls on litter decomposition rates in grasslands. Ecology 84(12):3198–3208CrossRefGoogle Scholar
  4. Appling AP, Bernhardt ES, Stanford JA (2014) Floodplain biogeochemical mosaics: a multidimensional view of alluvial soils. J Geophys Res 119(8):1538–1553CrossRefGoogle Scholar
  5. Arnalds Ó (2008) Soils of Iceland. Jökull 58:409–422Google Scholar
  6. Arnalds Ó (2015) The soils of Iceland, 1st edn. Springer, DordrechtGoogle Scholar
  7. Arora VK, Boer GJ (2014) Terrestrial ecosystems response to future changes in climate and atmospheric CO2 concentration. Biogeosciences 11(15):4157–4171CrossRefGoogle Scholar
  8. Bachelet D, Neilson RP, Hickler T, Drapek RJ, Lenihan JM, Sykes MT, Smith B, Sitch S, Thonicke K (2003) Simulating past and future dynamics of natural ecosystems in the United States. Glob Biogeochem Cycle. doi: 10.1029/2001GB001508 Google Scholar
  9. Baldocchi D (2008) Breathing of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems. Aust J Bot 56(1):1–26CrossRefGoogle Scholar
  10. Baldurson S, Ingadóttir A (2007) Nomination of Surtsey for the UNESCO World Heritage List. Icelandic Institute of Natural History, GarðabærGoogle Scholar
  11. Batjes NH (2014) Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 65(1):10–21CrossRefGoogle Scholar
  12. Blackall TD, Wilson LJ, Theobald MR, Milford C, Nemitz E, Bull J, Bacon PJ, Hamer KC, Wanless S, Sutton MA (2007) Ammonia emissions from seabird colonies. Geophys Res Lett 34:1–5CrossRefGoogle Scholar
  13. Bouskill NJ, Riley WJ, Tang JY (2014) Meta-analysis of high-latitude nitrogen-addition and warming studies implies ecological mechanisms overlooked by land models. Biogeosciences 11(23):6969–6983CrossRefGoogle Scholar
  14. Canadell JG, Le Quere C, Raupach MR, Field CB, Buitenhuis ET, Ciais P, Conway TJ, Gillett NP, Houghton RA, Marland G (2007) Contributions to accelerating atmospheric CO(2) growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Natl Acad Sci USA 104(47):18866–18870CrossRefGoogle Scholar
  15. Chapin FS, Pamela AM, Vitousek PM (2011) Principles of terrestrial ecosystem ecology, 2nd edn. Springer, New YorkCrossRefGoogle Scholar
  16. Ciais P, Tans PP, Trolier M, White JWC, Francey RJ (1995) A large northern-hemisphere terrestrial CO2 sink indicated by the C-13/C-12 ratio of atmospheric CO2. Science 269(5227):1098–1102CrossRefGoogle Scholar
  17. Cramer W, Bondeau A, Woodward FI, Prentice IC, Betts RA, Brovkin V, Cox PM, Fisher V, Foley JA, Friend AD, Kucharik C, Lomas MR, Ramankutty N, Sitch S, Smith B, White A, Young-Molling C (2001) Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Glob Change Biol 7(4):357–373CrossRefGoogle Scholar
  18. Creamer CA, Filley TR, Boutton TW, Oleynik S, Kantola IB (2011) Controls on soil carbon accumulation during woody plant encroachment: evidence from physical fractionation, soil respiration, and delta C-13 of respired CO2. Soil Biol Biochem 43(8):1678–1687CrossRefGoogle Scholar
  19. Crocker RL, Major J (1955) Soil development in relation to vegetation and surface age at Glacier Bay, Alaska. J Ecol 43(2):427–448CrossRefGoogle Scholar
  20. Deluca TH, Boisvenue C (2012) Boreal forest soil carbon: distribution, function and modelling. Forestry 85(2):161–184CrossRefGoogle Scholar
  21. Fernandez-Martinez M, Vicca S, Janssens IA, Sardans J, Luyssaert S, Campioli M, Chapin FS, Ciais P, Malhi Y, Obersteiner M, Papale D, Piao SL, Reichstein M, Roda F, Penuelas J (2014) Nutrient availability as the key regulator of global forest carbon balance. Nat Clim Change 4(6):471–476CrossRefGoogle Scholar
  22. Fontaine S, Barot S, Barre P, Bdioui N, Mary B, Rumpel C (2007) Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450(7167):277–280CrossRefGoogle Scholar
  23. Foote RL, Grogan P (2010) Soil carbon accumulation during temperate forest succession on abandoned low productivity agricultural lands. Ecosystems 13(6):795–812CrossRefGoogle Scholar
  24. Friedlingstein P, Cox P, Betts R, Bopp L, Von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I, Bala G, John J, Jones C, Joos F, Kato T, Kawamiya M, Knorr W, Lindsay K, Matthews HD, Raddatz T, Rayner P, Reick C, Roeckner E, Schnitzler KG, Schnur R, Strassmann K, Weaver AJ, Yoshikawa C, Zeng N (2006) Climate-carbon cycle feedback analysis: results from the (CMIP)-M-4 model intercomparison. J Clim 19(14):3337–3353CrossRefGoogle Scholar
  25. Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai ZC, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320(5878):889–892CrossRefGoogle Scholar
  26. Garcia LV, Maranon T, Ojeda F, Clemente L, Redondo R (2002) Seagull influence on soil properties, chenopod shrub distribution, and leaf nutrient status in semi-arid Mediterranean islands. Oikos 98(1):75–86CrossRefGoogle Scholar
  27. Gisladottir G, Erlendsson E, Lal R, Bigham J (2010) Erosional effects on terrestrial resources over the last millennium in Reykjanes, southwest Iceland. Quat Res 73(1):20–32CrossRefGoogle Scholar
  28. Grace J (2004) Understanding and managing the global carbon cycle. J Ecol 92(2):189–202CrossRefGoogle Scholar
  29. Gudmundsson T, Bjornsson H, Thorvaldsson G (2004) Organic carbon accumulation and pH changes in an andic gleysol under a long-term fertilizer experiment in Iceland. Catena 56(1–3):213–224CrossRefGoogle Scholar
  30. Gundale MJ, From F, Bach LH, Nordin A (2014) Anthropogenic nitrogen deposition in boreal forests has a minor impact on the global carbon cycle. Glob Change Biol 20(1):276–286CrossRefGoogle Scholar
  31. Hansen ES, Sigusteinsson M, Gardarsson A (2011) The breeding population size of the Atlantic Puffin in Vestmannaeyjar, S-Iceland. Bliki 31:15–24Google Scholar
  32. Harden JW, Sundquist ET, Stallard RF, Mark RK (1992) Dynamics of soil carbon during deglaciation of the Laurentide ice-sheet. Science 258(5090):1921–1924CrossRefGoogle Scholar
  33. Hassink J (1997) The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant Soil 191(1):77–87CrossRefGoogle Scholar
  34. Havik G, Catenazzi A, Holmgren M (2014) Seabird nutrient subsidies benefit non-nitrogen fixing trees and alter species composition in South American coastal dry forests. PLoS ONE 9(1):e86381CrossRefGoogle Scholar
  35. He L, Tang Y (2008) Soil development along primary succession sequences on moraines of Hailuogou Glacier, Gongga Mountain, Sichuan, China. Catena 72(2):259–269CrossRefGoogle Scholar
  36. Hobbie SE (2008) Nitrogen effects on decomposition: a five-year experiment in eight temperate sites. Ecology 89(9):2633–2644CrossRefGoogle Scholar
  37. Hobbie SE, Ogdahl M, Chorover J, Chadwick OA, Oleksyn J, Zytkowiak R, Reich PB (2007) Tree species effects on soil organic matter dynamics: the role of soil cation composition. Ecosystems 10(6):999–1018CrossRefGoogle Scholar
  38. Hopkins DW, Waite IS, McNicol JW, Poulton PR, Macdonald AJ, O’Donnell AG (2009) Soil organic carbon contents in long-term experimental grassland plots in the UK (Palace Leas and Park Grass) have not changed consistently in recent decades. Glob Change Biol 15(7):1739–1754CrossRefGoogle Scholar
  39. Hua KK, Wang DZ, Guo XS, Guo ZB (2014) Carbon sequestration efficiency of organic amendments in a long-term experiment on a vertisol in Huang-Huai-Hai Plain, China. PLoS ONE 9(9):e108594CrossRefGoogle Scholar
  40. Hudson RJM, Gherini SA, Goldstein RA (1994) Modeling the global carbon cycle, nitrogen fertilization of the terrestrial biosphere and the missing CO2 sink. Glob Biogeochem. Cycle 8(3):307–333CrossRefGoogle Scholar
  41. Hyvonen R, Agren GI, Linder S, Persson T, Cotrufo MF, Ekblad A, Freeman M, Grelle A, Janssens IA, Jarvis PG, Kellomaki S, Lindroth A, Loustau D, Lundmark T, Norby RJ, Oren R, Pilegaard K, Ryan MG, Sigurdsson BD, Stromgren M, van Oijen M, Wallin G (2007) The likely impact of elevated CO2, nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New Phytol 173(3):463–480CrossRefGoogle Scholar
  42. IPCC (2013) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Stocker TF, Qin D, Plattner GK, M. Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V and Midgley PM (eds) Cambridge University Press, Cambridge, NY, USA, p 1535Google Scholar
  43. Jakobsson S, Magnússon B, Ólafsson E, Thorvaldardóttir E, Gunnarsson K, Baldursson S, Petersen A (2007) Nomination of Surtsey for the UNESCO World Heritage List. Icelandic inisture of Natural History, ReykjavikGoogle Scholar
  44. Janzen HH (2004) Carbon cycling in earth systems—a soil science perspective. Agric Ecosyst Environ 104(3):399–417CrossRefGoogle Scholar
  45. Kabala C, Zapart J (2012) Initial soil development and carbon accumulation on moraines of the rapidly retreating Werenskiold Glacier, SW Spitsbergen, Svalbard archipelago. Geoderma 175:9–20CrossRefGoogle Scholar
  46. Kalinina O, Chertov O, Dolgikh AV, Goryachkin SV, Lyuri DI, Vormstein S, Giani L (2013) Self-restoration of post-agrogenic Albeluvisols: soil development, carbon stocks and dynamics of carbon pools. Geoderma 207:221–233CrossRefGoogle Scholar
  47. Kirschbaum MUF, Simioni G, Medlyn BE, McMurtrie RE (2003) On the importance of including soil nutrient feedback effects for predicting ecosystem carbon exchange. Funct Plant Biol 30(2):223–237CrossRefGoogle Scholar
  48. Knorr M, Frey SD, Curtis PS (2005) Nitrogen additions and litter decomposition: a meta-analysis. Ecology 86(12):3252–3257CrossRefGoogle Scholar
  49. Kramer C, Gleixner G (2008) Soil organic matter in soil depth profiles: distinct carbon preferences of microbial groups during carbon transformation. Soil Biol Biochem 40(2):425–433CrossRefGoogle Scholar
  50. Kroël-Dulay G, Ransijn J, Schmidt IK, Beier C, De Angelis P, de Dato G, Dukes JS, Emmett B, Estiarte M, Garadnai J, Konstrad J, Smith AR, Sowerby A, Tietema A, Penuelas J (2015) Increased sensitivity to climate change in disturbed ecosystems. Nat Commun 6:6682CrossRefGoogle Scholar
  51. Lamarque JF, Dentener F, McConnell J, Ro CU, Shaw M, Vet R, Bergmann D, Cameron-Smith P, Dalsoren S, Doherty R, Faluvegi G, Ghan SJ, Josse B, Lee YH, MacKenzie IA, Plummer D, Shindell DT, Skeie RB, Stevenson DS, Strode S, Zeng G, Curran M, Dahl-Jensen D, Das S, Fritzsche D, Nolan M (2013) Multi-model mean nitrogen and sulfur deposition from the atmospheric chemistry and climate model intercomparison project (ACCMIP): evaluation of historical and projected future changes. Atmos Chem Phys 13(16):7997–8018CrossRefGoogle Scholar
  52. Larsen G (1984) Recent volcanic history of the veidivotn fissure swarm, Southern Iceland—an approach to volcanic risk assessment. J Volcanol Geotherm Res 22(1–2):33–58CrossRefGoogle Scholar
  53. Le Quere C, Raupach MR, Canadell JG, Marland G, Bopp L, Ciais P, Conway TJ, Doney SC, Feely RA, Foster P, Friedlingstein P, Gurney K, Houghton RA, House JI, Huntingford C, Levy PE, Lomas MR, Majkut J, Metzl N, Ometto JP, Peters GP, Prentice IC, Randerson JT, Running SW, Sarmiento JL, Schuster U, Sitch S, Takahashi T, Viovy N, van der Werf GR, Woodward FI (2009) Trends in the sources and sinks of carbon dioxide. Nat Geosci 2(12):831–836CrossRefGoogle Scholar
  54. LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89(2):371–379CrossRefGoogle Scholar
  55. Leblans NIW, Sigurdsson BD, Roefs P, Thuys R, Magnússon B, Janssens IA (2014) Effects of seabird nitrogen input on biomass and carbon accumulation after 50 years of primary succession on a young volcanic island, Surtsey. Biogeosciences 11:1–14CrossRefGoogle Scholar
  56. Lichter J (1998) Primary succession and forest development on coastal Lake Michigan sand dunes. Ecol Monogr 68(4):487–510Google Scholar
  57. Liu SJ, Zhang W, Wang KL, Pan FJ, Yang S, Shu SY (2015) Factors controlling accumulation of soil organic carbon along vegetation succession in a typical karst region in Southwest China. Sci Total Environ 521:52–58CrossRefGoogle Scholar
  58. Lloyd J (1999) The CO2 dependence of photosynthesis, plant growth responses to elevated CO2 concentrations and their interaction with soil nutrient status, II. Temperate and boreal forest productivity and the combined effects of increasing CO2 concentrations and increased nitrogen deposition at a global scale. Funct Ecol 13(4):439–459CrossRefGoogle Scholar
  59. Mack MC, Schuur EAG, Bret-Harte MS, Shaver GR, Chapin FS (2004) Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature 431(7007):440–443CrossRefGoogle Scholar
  60. Magnússon B, Magnússon SH (2000) Vegetation succession on Surtsey, Iceland, during 1990–1998, under the influence of breeding gulls. Surtsey Res 11:9–20Google Scholar
  61. Magnússon B, Magnússon SH, Ólafsson E, Sigurdsson BD (2014) Plant colonization, succession and ecosystem development on Surtsey with reference to neighbouring islands. Biogeosciences 11(19):5521–5537CrossRefGoogle Scholar
  62. Mattsson H, Hoskuldsson A (2005) Geology of the Heimaey volcanic centre, south Iceland: early evolution of a central volcano in a propagating rift? J Volcanol Geotherm Res 127(1–2):55–71Google Scholar
  63. Mattsson H, Höskuldsson Á (2003) Geology of the Heimaey volcanic centre, south Iceland: early evolution of a central volcano in a propagating rift? J Volcanol Geotherm Res 127:55–71CrossRefGoogle Scholar
  64. Matus F, Rumpel C, Neculman R, Panichini M, Mora ML (2014) Soil carbon storage and stabilisation in andic soils: a review. CATENA 120:102–110CrossRefGoogle Scholar
  65. Milchunas DG, Morgan JA, Mosier AR, LeCain DR (2005) Root dynamics and demography in shortgrass steppe under elevated CO2, and comments on minirhizotron methodology. Glob Change Biol 11(10):1837–1855CrossRefGoogle Scholar
  66. Morales P, Hickler T, Rowell DP, Smith B, Sykes MT (2007) Changes in European ecosystem productivity and carbon balance driven by regional climate model output. Glob Change Biol 13(1):108–122CrossRefGoogle Scholar
  67. Morgan AV (2000) The Eldfell eruption, Heimaey, Iceland: a 25-year retrospective. Geosci Can 27(1):11–18Google Scholar
  68. Mueller KE, Eissenstat DM, Hobbie SE, Oleksyn J, Jagodzinski AM, Reich PB, Chadwick OA, Chorover J (2012) Tree species effects on coupled cycles of carbon, nitrogen, and acidity in mineral soils at a common garden experiment. Biogeochemistry 111(1–3):601–614CrossRefGoogle Scholar
  69. Nilsson LO, Wallander H, Gundersen P (2012) Changes in microbial activities and biomasses over a forest floor gradient in C-to-N ratio. Plant Soil 355(1–2):75–86CrossRefGoogle Scholar
  70. Olson KR, Al-Kaisi MM (2015) The importance of soil sampling depth for accurate account of soil organic carbon sequestration, storage, retention and loss. CATENA 125:33–37CrossRefGoogle Scholar
  71. Óskarsson H, Arnalds O, Gudmundsson J, Gudbergsson G (2004) Organic carbon in Icelandic Andosols: geographical variation and impact of erosion. CATENA 56(1–3):225–238CrossRefGoogle Scholar
  72. Pansu MJG (2003) Handbook of soil analyses—mineralogical, organic and inorganic methods. Springer, BerlinGoogle Scholar
  73. Pausch J, Kuzyakov Y (2012) Soil organic carbon decomposition from recently added and older sources estimated by delta C-13 values of CO2 and organic matter. Soil Biol Biochem 55:40–47CrossRefGoogle Scholar
  74. Gundersen P, Ginzburg SO, Vesterdal L, Bárcena TG, Sigurdsson BD, Stefansdottir HM, Oddsdottir ES, Clarke N, Kjønaas OJ, Persson T, Ågren G, Olsson B, Fröberg M, Karltun E, Olsson RH, Akselsson C, Bengtson P, Belyazid S, Wallander H, Lazdiņš A, Lībiete Z, Lazdiņa D (2014) Forest soil carbon sink in the Nordic region. In: Gundersen P (ed) IGN Report. University of Copenhagen, Frederiksberg, p 37Google Scholar
  75. Pepper DA, Del Grosso SJ, McMurtrie RE, Parton WJ (2005) Simulated carbon sink response of shortgrass steppe, tallgrass prairie and forest ecosystems to rising CO2, temperature and nitrogen input. Glob Biogeochem Cycle. doi: 10.1029/2004GB002 Google Scholar
  76. Perez CA, Frangi JL (2000) Grassland biomass dynamics along an altitudinal gradient in the Pampa. J Range Manage 53(5):518–528CrossRefGoogle Scholar
  77. Post WM, Kwon KC (2000) Soil carbon sequestration and land-use change: processes and potential. Glob Change Biol 6(3):317–327CrossRefGoogle Scholar
  78. Poulter B, Frank DC, Hodson EL, Zimmermann NE (2011) Impacts of land cover and climate data selection on understanding terrestrial carbon dynamics and the CO2 airborne fraction. Biogeosciences 8(8):2027–2036CrossRefGoogle Scholar
  79. Rahman MM (2013) Nutrient-use and carbon-sequestration efficiencies in soils from different organic wastes in rice and tomato cultivation. Commun Soil Sci Plant Anal 44(9):1457–1471CrossRefGoogle Scholar
  80. Rahman MM (2014) Carbon and nitrogen dynamics and carbon sequestration in soils under different residue management. The Agriculturalists 12(2):48–55CrossRefGoogle Scholar
  81. R-core-team (2014) R: A language and environment for statistical computing. Computing RFfS (ed), ViennaGoogle Scholar
  82. Reich PB, Oleksyn J (2004) Global patterns of plant leaf N and P in relation to temperature and latitude. Proc Natl Acad Sci USA 101(30):11001–11006CrossRefGoogle Scholar
  83. Rhoades C, Binkley D, Oskarsson H, Stottlemyer R (2008) Soil nitrogen accretion along a floodplain terrace chronosequence in northwest Alaska: influence of the nitrogen-fixing shrub Shepherdia canadensis. Ecoscience 15(2):223–230CrossRefGoogle Scholar
  84. Rumpel C, Kogel-Knabner I (2011) Deep soil organic matter-a key but poorly understood component of terrestrial C cycle. Plant Soil 338(1–2):143–158CrossRefGoogle Scholar
  85. Saynes V, Hidalgo C, Etchevers JD, Campo JE (2005) Soil C and N dynamics in primary and secondary seasonally dry tropical forests in Mexico. Appl Soil Ecol 29(3):282–289CrossRefGoogle Scholar
  86. Schlesinger WH (1997) Biochemistry, An analysis of global change. Academic Press, CambridgeGoogle Scholar
  87. Schlesinger WH (2009) On the fate of anthropogenic nitrogen. Proc Natl Acad Sci USA 106(1):203–208CrossRefGoogle Scholar
  88. Schmidt S, Dennison WC, Moss GJ, Stewart GR (2004) Nitrogen ecophysiology of Heron Island, a subtropical coral cay of the Great Barrier Reef, Australia. Funct Plant Biol 31(5):517–528CrossRefGoogle Scholar
  89. Seedre M, Shrestha BM, Chen HYH, Colombo S, Jogiste K (2011) Carbon dynamics of North American boreal forest after stand replacing wildfire and clearcut logging. J For Res 16(3):168–183CrossRefGoogle Scholar
  90. Sigurdsson BD, Magnússon B (2010) Effects of seagulls on ecosystem respiration, soil nitrogen and vegetation cover on a pristine volcanic island, Surtsey, Iceland. Biogeosciences 7(3):883–891CrossRefGoogle Scholar
  91. Sillen WMA, Dieleman WIJ (2012) Effects of elevated CO2 and N fertilization on plant and soil carbon pools of managed grasslands: a meta-analysis. Biogeosciences 9(6):2247–2258CrossRefGoogle Scholar
  92. Smithwick EAH, Kashian DM, Ryan MG, Turner MG (2009) Long-term nitrogen storage and soil nitrogen availability in post-fire lodgepole pine ecosystems. Ecosystems 12(5):792–806CrossRefGoogle Scholar
  93. Sui XH, Zhou GS (2013) Carbon dynamics of temperate grassland ecosystems in China from 1951 to 2007: an analysis with a process-based biogeochemistry model. Environ Earth Sci 68(2):521–533CrossRefGoogle Scholar
  94. Tao FL, Zhang Z (2010) Dynamic responses of terrestrial ecosystems structure and function to climate change in China. J Geophys Res. doi: 10.1029/2009JG001062 Google Scholar
  95. Todd-Brown KEO, Randerson JT, Post WM, Hoffman FM, Tarnocai C, Schuur EAG, Allison SD (2013) Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations. Biogeosciences 10(3):1717–1736CrossRefGoogle Scholar
  96. Trumbore SE, Harden JW (1997) Accumulation and turnover of carbon in organic and mineral soils of the BOREAS northern study area. J Geophys Res 102(D24):28817–28830CrossRefGoogle Scholar
  97. USDA (2016) Soil texture calculator. In: Soils NRCS- (ed). vol 26th of June 2016. United States Department of Agriculture USAGoogle Scholar
  98. Vicca S, Luyssaert S, Penuelas J, Campioli M, Chapin FS, Ciais P, Heinemeyer A, Hogberg P, Kutsch WL, Law BE, Malhi Y, Papale D, Piao SL, Reichstein M, Schulze ED, Janssens IA (2012) Fertile forests produce biomass more efficiently. Ecol Lett 15(6):520–526CrossRefGoogle Scholar
  99. Vilmundardóttir OK, Gísladóttir G, Lal R (2015) Soil carbon accretion along an age chronosequence formed by the retreat of the Skaftafellsjökull glacier, SE-Iceland. Geomorphology 228:124–133CrossRefGoogle Scholar
  100. Vitousek PM, Reiners WA (1975) Ecosystem succession and nutrient retention—hypothesis. Bioscience 25(6):376–381CrossRefGoogle Scholar
  101. Wang Y, Hsieh YP (2002) Uncertainties and novel prospects in the study of the soil carbon dynamics. Chemosphere 49(8):791–804CrossRefGoogle Scholar
  102. Wardle DA, Zackrisson O, Hornberg G, Gallet C (1997) The influence of island area on ecosystem properties. Science 277(5330):1296–1299CrossRefGoogle Scholar
  103. White A, Cannell MGR, Friend AD (2000) The high-latitude terrestrial carbon sink: a model analysis. Glob Change Biol 6(2):227–245CrossRefGoogle Scholar
  104. White LL, Zak DR, Barnes BV (2004) Biomass accumulation and soil nitrogen availability in an 87-year-old Populus grandidentata chronosequence. For Ecol Manage 191(1–3):121–127CrossRefGoogle Scholar
  105. Wieder WR, Bonan GB, Allison SD (2013) Global soil carbon projections are improved by modelling microbial processes. Nat. Clim. Chang. 3(10):909–912CrossRefGoogle Scholar
  106. Wieder WR, Cleveland CC, Lawrence DM, Bonan GB (2015) Effects of model structural uncertainty on carbon cycle projections: biological nitrogen fixation as a case study. Environ Res Lett 10(4):044016CrossRefGoogle Scholar
  107. Wiesmeier M, Hubner R, Sporlein P, Geuss U, Hangen E, Reischl A, Schilling B, von Lutzow M, Kogel-Knabner I (2014) Carbon sequestration potential of soils in southeast Germany derived from stable soil organic carbon saturation. Glob Change Biol 20(2):653–665CrossRefGoogle Scholar
  108. Wilson LJ, Bacon JB, Dragosits U, Blackall TD, Dunn TE, Hamer KC, Sutton MA, Wanless S (2004) Modelling the spatial distribution of ammonia emmissions from seabirds in the UK. Environ Pollut 131:173–185CrossRefGoogle Scholar
  109. Wookey PA, Aerts R, Bardgett RD, Baptist F, Brathen KA, Cornelissen JHC, Gough L, Hartley IP, Hopkins DW, Lavorel S, Shaver GR (2009) Ecosystem feedbacks and cascade processes: understanding their role in the responses of Arctic and alpine ecosystems to environmental change. Glob Change Biol 15(5):1153–1172CrossRefGoogle Scholar
  110. Wutzler T, Reichstein M (2007) Soils apart from equilibrium—consequences for soil carbon balance modelling. Biogeosciences 4(1):125–136CrossRefGoogle Scholar
  111. Zehetner F (2010) Does organic carbon sequestration in volcanic soils offset volcanic CO2 emissions? Quat Sci Rev 29(11–12):1313–1316CrossRefGoogle Scholar
  112. Zhang DQ, Hui DF, Luo YQ, Zhou GY (2008) Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. J. Plant Ecol 1(2):85–93CrossRefGoogle Scholar
  113. Zwolicki A, Zmudczynska-Skarbek KM, Iliszko L, Stempniewicz L (2013) Guano deposition and nutrient enrichment in the vicinity of planktivorous and piscivorous seabird colonies in Spitsbergen. Polar Biol 36(3):363–372CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of BiologyUniversity of AntwerpWilrijkBelgium
  2. 2.Faculty of Environmental SciencesAgricultural University of IcelandBorgarnesIceland
  3. 3.Department of Systems EcologyVrije UniversiteitAmsterdamThe Netherlands
  4. 4.Icelandic Institute of Natural HistoryGarðabærIceland

Personalised recommendations