, Volume 134, Issue 3, pp 243–260 | Cite as

Biological chlorine cycling in the Arctic Coastal Plain

  • Jaime E. Zlamal
  • Theodore K. Raab
  • Mark Little
  • Robert A. Edwards
  • David A. LipsonEmail author


This study explores biological chlorine cycling in coastal Arctic wet tundra soils. While many previous chlorine-cycling studies have focused on contaminated environments, it is now recognized that chlorine can cycle naturally between inorganic and organic forms in soils. However, these pathways have not previously been described for an Arctic ecosystem. We measured soil organic and inorganic Cl pools, characterized soils and plant tissues with chlorine K-edge X-ray absorption near-edge spectroscopy (Cl-XANES), measured dechlorination rates in laboratory incubations, and analyzed metagenomes and 16S rRNA genes along a chronosequence of revegetated drained lake basins. Concentrations of soil organic chlorinated compounds (Clorg) were correlated with organic matter content, with a steeper slope in older soils. The concentration and chemical diversity of Clorg increased with soil development, with Clorg in younger soils more closely resembling that of vegetation, and older soils having more complex and variable Cl-XANES signatures. Plant Clorg concentrations were higher than previously published values, and can account for the rapid accumulation of Clorg in soils. The high rates of Clorg input from plants also implies that soil Clorg pools turn over many times during soil development. Metagenomic analyses revealed putative genes for synthesis (haloperoxidases, halogenases) and breakdown (reductive dehalogenases, halo-acid dehalogenases) of Clorg, originating from diverse microbial genomes. Many genome sequences with close similarity to known organohalide respirers (e.g. Dehalococcoides) were identified, and laboratory incubations demonstrated microbial organohalide respiration in vitro. This study provides multiple lines of evidence for a complex and dynamic chlorine cycle in an Arctic tundra ecosystem.


Chlorine Halogen Organohalide respiration XANES Arctic Dehalococcoides 



Dominic Goria, Matt Haggerty and the SDSU Ecological Metagenomics Class of 2012 were instrumental in metagenome creation and analysis. Donatella Zona and Paulo Olivas provided plant samples. We thank Trudy Bolin and Tianpin Wu at Argonne National Labs for their training and patience. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. XANES spectra were collected at the X-ray Operations and Research Beamline 9-BM-C at the Advanced Photon Source, Argonne National Laboratory in Lemont, Illinois, U.S.A. Competitive access to the APS was greatly aided by proof-of-concept XANES spectra collected at the Canadian Light Source by Yongfeng Hu. This work was supported in part by National Science Foundation Grants 0808604, 1204263 and 1712774.

Supplementary material

10533_2017_359_MOESM1_ESM.docx (2.4 mb)
Supplementary material 1 (DOCX 2461 kb)


  1. Achenbach LA, Michaelidou U, Bruce RA, Fryman J, Coates JD (2001) Dechloromonas agitata gen. nov., sp. nov. and Dechlorosoma suillum gen. nov., sp. nov., two novel environmentally dominant (per)chloratereducing bacteria and their phylogenetic position. Int J Syst Evol Microbiol 51:527–533CrossRefGoogle Scholar
  2. Asplund G, Grimvall A (1991) Organohalogens in nature. Environ Sci Technol 25:1346–1350CrossRefGoogle Scholar
  3. Asplund G, Grimvall A, Jonsson S (1994) Determination of the total and leachable amounts of organohalogens in soil. Chemosphere 28:1467–1475CrossRefGoogle Scholar
  4. Aulenta F, Pera A, Rossetti S, Papini MP, Majone M (2007) Relevance of side reactions in anaerobic reductive dechlorination microcosms amended with different electron donors. Water Res 41:27–38CrossRefGoogle Scholar
  5. Azizian MF, Marshall IP, Behrens S, Spormann AM, Semprini L (2010) Comparison of lactate, formate, and propionate as hydrogen donors for the reductive dehalogenation of trichloroethene in a continuous-flow column. J Contam Hydrol 113:77–92CrossRefGoogle Scholar
  6. Bastviken D, Svensson T, Karlsson S, Sanden P, Oberg G (2009) Temperature sensitivity indicates that chlorination of organic matter in forest soil is primarily biotic. Environ Sci Technol 43:3569–3573CrossRefGoogle Scholar
  7. Bastviken D, Svensson T, Sandén P, Kylin H (2013) Chlorine cycling and fates of 36Cl in terrestrial environments. Swedish Nuclear Fuel and Waste Management Co, OskarshamnGoogle Scholar
  8. Bengtson P, Bastviken D, De Boer W, Öberg G (2009) Possible role of reactive chlorine in microbial antagonism and organic matter chlorination in terrestrial environments. Environ Microbiol 11:1330–1339CrossRefGoogle Scholar
  9. Bengtson P, Bastviken D, Öberg G (2013) Possible roles of reactive chlorine II: assessing biotic chlorination as a way for organisms to handle oxygen stress. Environ Microbiol 15:991–1000CrossRefGoogle Scholar
  10. Biester H, Selimović D, Hemmerich S, Petri M (2006) Halogens in pore water of peat bogs—the role of peat decomposition and dissolved organic matter. Biogeosciences 3:53–64CrossRefGoogle Scholar
  11. Bockheim JG, Hinkel KM, Nelson FE (2001) Soils of the Barrow region. Alask Polar Geogr 25:163–181CrossRefGoogle Scholar
  12. Bockheim JG, Hinkel KM, Eisner WR, Dai XY (2004) Carbon pools and accumulation rates in an age-series of soils in drained thaw-lake basins. Arctic Alask Soil Sci Soc Am J 68:697–704CrossRefGoogle Scholar
  13. Bolin TB (2010) Direct determination of pyrite content in argonne premium coals by the use of sulfur X-ray near edge absorption spectroscopy (S-XANES). Energy Fuels 24:5479–5482CrossRefGoogle Scholar
  14. Bommer M, Kunze C, Fesseler J, Schubert T, Diekert G, Dobbek H (2014) Structural basis for organohalide respiration. Science 346:455–458CrossRefGoogle Scholar
  15. Brown J (1967) Tundra soils formed over ice wedges, northern Alaska. Soil Sci Soc Am Proc 31:686–691CrossRefGoogle Scholar
  16. Brown J, Jorgenson MT, Smith OP, Lee W (2003) Long-term rates of coastal erosion and carbon input, Elson Lagoon, Barrow, Alaska. In: Proceedings of the Eighth International Conference on Permafrost, pp. 21–25Google Scholar
  17. Burnham KP, Anderson DR (2003) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New YorkGoogle Scholar
  18. Clarke N et al (2009) The formation and fate of chlorinated organic substances in temperate and boreal forest soils. Environ Sci Pollut Res 16:127–143CrossRefGoogle Scholar
  19. Comba P, Kerscher M, Krause T, Schöler HF (2015) Iron-catalysed oxidation and halogenation of organic matter in nature. Environ Chem 12:381–395. doi: 10.1071/EN14240 CrossRefGoogle Scholar
  20. Eddy SR (2011) Accelerated profile HMM searches. PLoS Comput Biol 7:e1002195. doi: 10.1371/journal.pcbi.1002195 CrossRefGoogle Scholar
  21. Egli C, Scholtz R, Cook AM, Leisinger T (1987) Anaerobic dechlorination of tetrachloromethane and 1,2-dichloroethane to degradable products by pure cultures of Desulfobacterium sp. and Methanobacterium sp. FEMS Microbiol Lett 43:257–261CrossRefGoogle Scholar
  22. Fagerbakke KM, Norland S, Heldal M (1999) The inorganic ion content of native aquatic bacteria. Can J Microbiol 45:304–311CrossRefGoogle Scholar
  23. Fahimi IJ, Keppler F, Schöler HF (2003) Formation of chloroacetic acids from soil, humic acid and phenolic moieties. Chemosphere 52:513–520CrossRefGoogle Scholar
  24. Fielman KT, Woodin SA, Walla MD, Lincoln DE (1999) Widespread occurrence of natural halogenated organics among temperate marine infauna. Mar Ecol Prog Ser 181:1–12CrossRefGoogle Scholar
  25. Fisher JB et al (2014) Carbon cycle uncertainty in the Alaskan Arctic. Biogeosciences 11:4271–4288. doi: 10.5194/bg-11-4271-2014 CrossRefGoogle Scholar
  26. Flodin C, Johansson E, Borén H, Grimvall A, Dahlman O, Mörck R (1997) Chlorinated structures in high molecular weight organic matter isolated from fresh and decaying plant material and soil. Environ Sci Technol 31:2464–2468CrossRefGoogle Scholar
  27. Frontasyeva M, Steinnes E (2004) Marine gradients of halogens in moss studies by epithermal neutron activation analysis. J Radioanal Nucl Chem 261:101–106CrossRefGoogle Scholar
  28. Futagami T, Goto M, Furukawa K (2008) Biochemical and genetic bases of dehalorespiration. Chem Rec 8:1–12CrossRefGoogle Scholar
  29. Gilbert J et al (2010) Meeting report: the terabase metagenomics workshop and the vision of an Earth microbiome project. Stand Genomic Sci 3:243CrossRefGoogle Scholar
  30. Goldman P, Milne G, Keister DB (1968) Carbon-halogen bond cleavage III. Studies on bacterial halidohydrolases. J Biol Chem 243:428–434Google Scholar
  31. Gribble GW (1998) Naturally occurring organohalogen compounds. Acc Chem Res 31:141–152CrossRefGoogle Scholar
  32. Gribble GW (2003) The diversity of naturally produced organohalogens. Chemosphere 52:289–297CrossRefGoogle Scholar
  33. Grosse G, Jones B, Arp C (2013) Thermokarst lakes, drainage, and drained basins. In: Shroder J, Giardino R, Harbor J (eds) Treatise on Geomorphology 8: Glacial and Periglacvial Geomorphology. Elsevier, Amsterdam, pp 325–353CrossRefGoogle Scholar
  34. Gustavsson M et al (2012) Organic matter chlorination rates in different boreal soils: the role of soil organic matter content. Environ Sci Technol 46:1504–1510CrossRefGoogle Scholar
  35. He Q, Sanford RA (2002) Induction characteristics of reductive dehalogenation in theortho-halophenol-respiring bacterium Anaeromyxobacter dehalogenans. Biodegradation 13:307–316CrossRefGoogle Scholar
  36. Hinkel K, Eisner W, Bockheim J (2003) Spatial extent, age, and carbon stocks in drained thaw lake basins on the Barrow Peninsula. Alask Arct Antarct Alp Res 35:291–300CrossRefGoogle Scholar
  37. Hinkel K, Frohn R, Nelson F, Eisner W, Beck R (2005) Morphometric and spatial analysis of thaw lakes and drained thaw lake basins in the western Arctic Coastal Plain. Alask Permafr Periglac Process 16:327–341CrossRefGoogle Scholar
  38. Hiraishi A (2008) Biodiversity of dehalorespiring bacteria with special emphasis on polychlorinated biphenyl/dioxin dechlorinators. Microbes Environ 23:1–12CrossRefGoogle Scholar
  39. Hjelm O, Johansson M-B, Öberg-Asolund G (1995) Organically bound halogens in coniferous forest soil-distribution pattern and evidence of in situ production. Chemosphere 30:2353–2364CrossRefGoogle Scholar
  40. Hobbie SE, Miley TA, Weiss MS (2002) Carbon and nitrogen cycling in soils from acidic and nonacidic tundra with different glacial histories in Northern Alaska. Ecosystems 5:0761–0774CrossRefGoogle Scholar
  41. Holliger C, Kengen S, Schraa G, Stams A, Zehnder A (1992) Methyl-coenzyme M reductase of Methanobacterium thermoautotrophicum delta H catalyzes the reductive dechlorination of 1,2-dichloroethane to ethylene and chloroethane. J Bacteriol 174:4435–4443CrossRefGoogle Scholar
  42. Holliger C, Gaspard S, Glod G, Heijman C, Schumacher W, Schwarzenbach RP, Vazquez F (1997) Contaminated environments in the subsurface and bioremediation: organic contaminants. FEMS Microbiol Rev 20:517–523CrossRefGoogle Scholar
  43. Holliger C, Wohlfarth G, Diekert G (1999) Reductive dechlorination in the energy metabolism of anaerobic bacteria. FEMS Microbiol Rev 22:383–398CrossRefGoogle Scholar
  44. Hug LA, Maphosa F, Leys D, Löffler FE, Smidt H, Edwards EA, Adrian L (2013) Overview of organohalide-respiring bacteria and a proposal for a classification system for reductive dehalogenases. Philos Transact R Soc B 368:20120322CrossRefGoogle Scholar
  45. Jacobi HW, Voisin D, Jaffrezo L, Cozic J, Douglas TA (2012) Chemical composition of the snowpack during the OASIS spring campaign 2009 at Barrow Alaska. J Geophys Res 117:D00R13CrossRefGoogle Scholar
  46. Kalff J (1968) Some physical and chemical characteristics of arctic fresh waters in Alaska and northwestern Canada. J Fis Board Can 25:2575–2587CrossRefGoogle Scholar
  47. Keppler F, Biester H (2003) Peatlands: a major sink of naturally formed organic chlorine. Chemosphere 52:451–453CrossRefGoogle Scholar
  48. Keppler F, Eiden R, Niedan V, Pracht J, Schöeler HF (2000) Halocarbons produced by natural oxidation processes during degradation of organic matter. Nature 403:298–301CrossRefGoogle Scholar
  49. Kurihara T, Esaki N, Soda K (2000) Bacterial 2-haloacid dehalogenases: structures and reaction mechanisms. J Mol Catal B Enzym 10:57–65CrossRefGoogle Scholar
  50. Lantuit H et al (2012) The Arctic coastal dynamics database: a new classification scheme and statistics on Arctic permafrost coastlines. Estuar Coasts 35:383–400CrossRefGoogle Scholar
  51. Leibundgut C, Maloszewski P, Külls C (2009) Environmental tracers. Tracers in hydrology. Wiley, New Jersey, pp 13–56CrossRefGoogle Scholar
  52. Leri AC, Myneni SCB (2010) Organochlorine turnover in forest ecosystems: the missing link in the terrestrial chlorine cycle. Glob Biogeochem Cycles 24:GB4021Google Scholar
  53. Leri AC, Hay MB, Lanzirotti A, Rao W, Myneni SCB (2006) Quantitative determination of absolute organohalogen concentrations in environmental samples by X-ray absorption spectroscopy. Anal Chem 76:5711–5718CrossRefGoogle Scholar
  54. Leri AC, Marcus MA, Myneni SCB (2007) X-ray spectroscopic investigation of natural organochlorine distribution in weathering plant material. Geochim Cosomochim Acta 71:5834–5846CrossRefGoogle Scholar
  55. Leys D, Adrian L, Smidt H (2013) Organohalide respiration: microbes breathing chlorinated molecules. Philos Trans R Soc B 368:20120316CrossRefGoogle Scholar
  56. Liljedahl A (2011) The hydrologic regime at sub-arctic and arctic Watersheds: present and projected. University of Alaska, FairbanksGoogle Scholar
  57. Lipson DA, Jha M, Raab TK, Oechel WC (2010) Reduction of iron(III) and humic substances plays a major role in anaerobic respiration in an Arctic peat soil. J Geophys Res 115:G00I06. doi: 10.1029/2009JG001147 CrossRefGoogle Scholar
  58. Lipson DA, Haggerty JM, Srinivas A, Raab TK, Sathe S, Dinsdale EA (2013a) Metagenomic insights into anaerobic metabolism along an Arctic peat soil profile. PLOS ONE 8:e64659CrossRefGoogle Scholar
  59. Lipson DA, Raab TK, Goria D, Zlamal J (2013b) The contribution of Fe(III) and humic acid reduction to ecosystem respiration in drained thaw lake basins of the Arctic Coastal Plain. Globa Biogeochem Cycles 27:1–11CrossRefGoogle Scholar
  60. Lipson DA, Raab TK, Parker M, Kelley ST, Brislawn CJ, Jansson J (2015) Changes in microbial communities along redox gradients in polygonized Arctic wet tundra soils. Environ Microbiol Rep 7:649–657CrossRefGoogle Scholar
  61. Löffler FE, Tiedje JM, Sanford RA (1999) Fraction of electrons consumed in electron acceptor reduction and hydrogen thresholds as indicators of halorespiratory physiology. Appl Environ Microbiol 65:4049–4056Google Scholar
  62. Löffler FE, Sun Q, Li J, Tiedje JM (2000) 16S rRNA gene-based detection of tetrachloroethene-dechlorinating Desulfuromonas and Dehalococcoides species. Appl Environ Microbiol 66:1369–1374CrossRefGoogle Scholar
  63. Lohner ST, Spormann AM (2013) Identification of a reductive tetrachloroethene dehalogenase in Shewanella sediminis. Phil Trans R Soc B 368:20120326CrossRefGoogle Scholar
  64. Louie TM, Mohn WW (1999) Evidence for a Chemiosmotic Model of Dehalorespiration in Desulfomonile tiedjeiDCB-1. J Bacteriol 181:40–46Google Scholar
  65. Lovley DR, Chapelle FH, Woodward JC (1994) Use of dissolved H2 concentrations to determine distribution of microbially catalyzed redox reactions in anoxic groundwater. Environ Sci Technol 28:1205–1210CrossRefGoogle Scholar
  66. Lynch AH, Lestak LR, Uotila P, Cassano EN, Xie L (2008) A factorial analysis of storm surge flooding in Barrow. Alask Mon Weather Rev 136:898–912CrossRefGoogle Scholar
  67. Manceau A, Marcus MA, Grangeon S (2012) Determination of Mn valence states in mixed-valent manganates by XANES spectroscopy. Am Miner 97:816–827CrossRefGoogle Scholar
  68. McDonald I, Warner K, McAnulla C, Woodall C, Oremland R, Murrell J (2002) A review of bacterial methyl halide degradation: biochemistry, genetics and molecular ecology. Environ Microbiol 4:193–203CrossRefGoogle Scholar
  69. Merchant M (2009) Miniaturization of a chloride ion assay for use in a microtiter format. Microchem J 92:80–82CrossRefGoogle Scholar
  70. Meyer F et al (2008) The metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinform 9:386CrossRefGoogle Scholar
  71. Miller KE, Lai C-T, Friedman ES, Angenent LT, Lipson DA (2015) Methane suppression by iron and humic acids in soils of the Arctic Coastal Plain. Soil Biol Biochem 83:176–183CrossRefGoogle Scholar
  72. Mohn WW, Tiedje JM (1992) Microbial reductive dehalogenation. Microbiol Rev 56:482–507Google Scholar
  73. Montelius M, Svensson T, Lourino-Cabana B, Thiry Y, Bastviken D (2016) Chlorination and dechlorination rates in a forest soil—a combined modelling and experimental approach. Sci Total Environ 554:203–210CrossRefGoogle Scholar
  74. Myneni SC (2002) Formation of stable chlorinated hydrocarbons in weathering plant material. Science 295:1039–1041CrossRefGoogle Scholar
  75. Niedan V, Pavasars I, Oberg G (2000) Chloroperoxidase-mediated chlorination of aromatic groups in fulvic acid. Chemosphere 41:779–785CrossRefGoogle Scholar
  76. Nonaka H et al (2006) Complete genome sequence of the dehalorespiring bacterium Desulfitobacterium hafniense Y51 and comparison with Dehalococcoides ethenogenes 195. J Bacteriol 188:2262–2274CrossRefGoogle Scholar
  77. Öberg G (1998) Chloride and organic chlorine in soil. Acta Hydrochim et Hydrobiol 26:137–144CrossRefGoogle Scholar
  78. Öberg G (2002) The natural chlorine cycle—fitting the scattered pieces. Appl Microbiol Biotechnol 58:565–581CrossRefGoogle Scholar
  79. Öberg G, Bastviken D (2012) Transformation of chloride to organic chlorine in terrestrial environments: variability extent, and implications. Crit Rev Environ Sci Technol 42:2526–2545CrossRefGoogle Scholar
  80. Öberg G, Grøn C (1998) Sources of organic halogens in spruce forest soil. Environ Sci Technol 32:1573–1579CrossRefGoogle Scholar
  81. Öberg G, Nordlund E, Berg B (1996) In situ formation of organically bound halogens during decomposition of Norway spruce needles: effects of fertilization. Can J For Res 26:1040–1048CrossRefGoogle Scholar
  82. Öberg G, Holm M, Sandén P, Svensson T, Parikka M (2005) The role of organic-matter-bound chlorine in the chlorine cycle: a case study of the Stubbetorp catchment. Swed Biogeochem 75:241–269CrossRefGoogle Scholar
  83. Passardi F, Zamocky M, Favet J, Jakopitsch C, Penel C, Obinger C, Dunand C (2007) Phylogenetic distribution of catalase-peroxidases: are there patches of order in chaos? Gene 397:101–113CrossRefGoogle Scholar
  84. Paul L, Smolders E (2014) Inhibition of iron(III) minerals and acidification on the reductive dechlorination of trichloroethylene. Chemosphere 111:471–477CrossRefGoogle Scholar
  85. Payne KAP et al (2015) Epoxyqueuosine reductase structure suggests a mechanism for cobalamin-dependent tRNA modification. J Biol Chem. doi: 10.1074/jbc.M115.685693 Google Scholar
  86. Peng J, Li J, Hamann MT (2005) The marine bromotyrosine derivatives. Alkaloids 61:59–262Google Scholar
  87. Ravel B, Newville M (2005) ATHENA and ARTEMIS: interactive graphical data analysis using IFEFFIT. Phys Scr 2005:1007CrossRefGoogle Scholar
  88. Redon P-O, Abdelouas A, Bastviken D, Cecchini S, Nicolas M, Thiry Y (2011) Chloride and organic chlorine in forest soils: storage residence times, and influence of ecological conditions. Environ Sci Technol 45:7202–7208CrossRefGoogle Scholar
  89. Redon P-O, Jolivet C, Saby NPA, Abdelouas A, Thiry Y (2013) Occurrence of natural organic chlorine in soils for different land uses. Biogeochemistry 114:413–419. doi: 10.1007/s10533-012-9771-7 CrossRefGoogle Scholar
  90. Reimnitz E, Maurer DK (1979) Effects of storm surges on the Beaufort Sea coast, Northern Alaska. Arctic 32:329–344CrossRefGoogle Scholar
  91. Rhew RC, Teh YA, Abel T (2007) Methyl halide and methane fluxes in the northern Alaskan Coastal Tundra. J Geophys Res 112:G02009. doi: 10.1029/2006JG000314 CrossRefGoogle Scholar
  92. Rhew RC, Teh YA, Abel T, Atwood A, Mazéas O (2008) Chloroform emissions from the Alaskan Arctic tundra. Geophys Res Lett 35:L21811CrossRefGoogle Scholar
  93. Richardson RE (2013) Genomic insights into organohalide respiration. Curr Opin Biotechnol 24:498–505CrossRefGoogle Scholar
  94. Rohlenová J, Gryndler M, Forczek ST, Fuksová K, Handová V, Matucha M (2009) Microbial chlorination of organic matter in Forest soil: investigation using 36Cl-chloride and its methodology. Environ Sci Technol 43:3652–3655CrossRefGoogle Scholar
  95. Rupakula A, Kruse T, Boeren S, Holliger C, Smidt H, Maillard J (2013) The restricted metabolism of the obligate organohalide respiring bacterium Dehalobacter restrictus: lessons from tiered functional genomics. Phil Trans R Soc B 368:20120325CrossRefGoogle Scholar
  96. Schmieder R, Edwards R (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics. doi: 10.1093/bioinformatics/btr026 Google Scholar
  97. Shani N, Rossi P, Holliger C (2013) Correlations between environmental variables and bacterial community structures suggest Fe(III) and vinyl chloride reduction as antagonistic terminal electron-accepting processes. Environ Sci Technol 47:6836–6845Google Scholar
  98. Shiklomanov NI et al (2010) Decadal variations of active-layer thickness in moisture-controlled landscapes, Barrow, Alaska. J Geophys Res 115:G00I04. doi: 10.1029/2009JG001248 CrossRefGoogle Scholar
  99. Silk PJ, Lonergan GC, Arsenault TL, Boyle CD (1997) Evidence of natural organochlorine formation in peat bogs. Chemosphere 35:2865–2880CrossRefGoogle Scholar
  100. Simpson WR, Alvarez-Aviles L, Douglas TA, Sturm M, Domine F (2005) Halogens in the coastal snow pack near Barrow, Alaska: evidence for active bromine air–snow chemistry during springtime. Geophysical Res Lett. doi: 10.1029/2004GL021748 Google Scholar
  101. Sturtevant CS, Oechel WC (2013) Spatial variation in landscape-level CO2 and CH4 fluxes from arctic coastal tundra: influence from vegetation, wetness, and the thaw lake cycle. Glob Change Biol 19:2853–2866. doi: 10.1111/gcb.12247 CrossRefGoogle Scholar
  102. Sun B, Cole JR, Sanford RA, Tiedje JM (2000) Isolation and characterization of Desulfovibrio dechloracetivorans sp. nov., a marine dechlorinating bacterium growing by coupling the oxidation of acetate to the reductive dechlorination of 2-chlorophenol. Appl Environ Microbiol 66:2408–2413CrossRefGoogle Scholar
  103. Sung Y et al (2006) Geobacter lovleyi sp. nov. strain SZ, a novel metal-reducing and tetrachloroethene-dechlorinating bacterium. Appl Environ Microbiol 72:2775–2782CrossRefGoogle Scholar
  104. Svensson T, Sanden P, Bastviken D, Oberg G (2007) Chlorine transport in a small catchment in southeast Sweden during 2 years. Biogeochemistry 82:181–199CrossRefGoogle Scholar
  105. Tang S, Edwards EA (2013) Identification of Dehalobacter reductive dehalogenases that catalyse dechlorination of chloroform, 1,1,1-trichloroethane and 1,1-dichloroethane. Phil Trans R Soc 368:20120318CrossRefGoogle Scholar
  106. Taş N, Eekert V, Miriam H, De Vos WM, Smidt H (2010) The little bacteria that can–diversity, genomics and ecophysiology of ‘Dehalococcoides’ spp. in contaminated environments. Microb Biotechnol 3:389–402CrossRefGoogle Scholar
  107. Teh YA, Mazéas O, Atwood AR, Abel T, Rhew RC (2009) Hydrologic regulation of gross methyl chloride and methyl bromide uptake from Alaskan Arctic tundra. Glob Change Biol 15:330–345. doi: 10.1111/j.1365-2486.2008.01749.x CrossRefGoogle Scholar
  108. Van den Hoof C, Thiry Y (2012) Modelling of the natural chlorine cycling in a coniferous stand: implications for chlorine-36 behaviour in a contaminated forest environment. J Environ Radioact 107:56–67CrossRefGoogle Scholar
  109. van Pée K-H, Unversucht S (2003) Biological dehalogenation and halogenation reactions. Chemosphere 52:299–312CrossRefGoogle Scholar
  110. van Pée KH, Dong C, Flecks S, Naismith J, Patallo EP, Wage T (2006) Biological halogenation has moved far beyond haloperoxidases. Adv Appl Microbiol 59:127–157CrossRefGoogle Scholar
  111. Wagner A, Segler L, Kleinsteuber S, Sawers G, Smidt H, Lechner U (2013) Regulation of reductive dehalogenase gene transcription in Dehalococcoides mccartyi. Phil Trans R Soc Lond B 368:20120317CrossRefGoogle Scholar
  112. Walker D et al (1998) Energy and trace-gas fluxes across a soil pH boundary in the Arctic. Nature 394:469–472CrossRefGoogle Scholar
  113. Walker DA et al (2005) The circumpolar Arctic vegetation map. J Veg Sci 16:267–282. doi: 10.1111/j.1654-1103.2005.tb02365.x CrossRefGoogle Scholar
  114. Weigold P et al (2016) A metagenomic-based survey of microbial (de) halogenation potential in a German forest soil. Sci Rep 6:28958CrossRefGoogle Scholar
  115. Wetzel G et al (2015) Partitioning and budget of inorganic and organic chlorine species observed by MIPAS-B and TELIS in the Arctic in March 2011. Atmos Chem Phys 15:8065–8076CrossRefGoogle Scholar
  116. Winter JM, Moore BS (2009) Exploring the chemistry and biology of vanadium-dependent haloperoxidases. J Biol Chem 284:18577–18581CrossRefGoogle Scholar
  117. Xu G, Wang B-G (2016) Independent evolution of six families of halogenating enzymes. PLOS ONE 11:e0154619. doi: 10.1371/journal.pone.0154619 CrossRefGoogle Scholar
  118. Zhang L-l, He D, Chen J-m, Liu Y (2010) Biodegradation of 2-chloroaniline, 3-chloroaniline, and 4-chloroaniline by a novel strain Delftia tsuruhatensis H1. J Hazard Mater 179:875–882CrossRefGoogle Scholar
  119. Zona D, Oechel WC, Peterson KM, Clements RJ (2010) Characterization of the carbon fluxes of a vegetated drained lake basin chronosequence on the Alaskan Arctic Coastal Plain. Glob Change Biol 16:1870–1882CrossRefGoogle Scholar
  120. Zona D, Oechel WC, Richards JH, Hastings S, Kopetz I, Ikawa H, Oberbauer S (2011) Light-stress avoidance mechanisms in a Sphagnum-dominated wet coastal Arctic tundra ecosystem in Alaska. Ecology 92:633–644CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of BiologySan Diego State UniversitySan DiegoUSA
  2. 2.Carnegie Institution for ScienceStanfordUSA
  3. 3.Department of Computer ScienceSan Diego State UniversitySan DiegoUSA

Personalised recommendations