, Volume 134, Issue 1–2, pp 29–39 | Cite as

Are elusive anaerobic pathways key methane sinks in eutrophic lakes and reservoirs?

  • Daniel C. Reed
  • Bridget R. Deemer
  • Sigrid van Grinsven
  • John A. Harrison
Synthesis and Emerging Ideas


Collectively, freshwaters constitute a significant source of methane to the atmosphere, and both methane production and methane oxidation can strongly influence net emissions. Anaerobic methane oxidation (AOM) is recognized as a strong regulator of marine methane emissions and appreciation of AOM’s importance in freshwater is growing. In spite of this renewed interest, recent work and reactive-transport modeling results we present in this paper point to unresolved pathways for AOM. Comparison of recent observations from a eutrophic reservoir, Lacamas Lake, with predictions of a 1D steady-state model of water column methane dynamics indicates that high rates of methane oxidation measured via bottle assays cannot be explained with conventional electron acceptors (O2, NO2 , NO3 , SO4 2−, Mn4+, and Fe3+). Reactive-transport modeling suggests that solute oxidant concentrations at the thermocline would have to be around 10 times higher than observed to explain the measured methane consumption. Organic acids—a major constituent of organic matter—may account for part of this unexplained AOM given their abundance in eutrophic systems, although the details of these pathways remain elusive (e.g., which species are involved, seasonal renewal of reduced species, contribution of particulate versus dissolved phases). We point to several observations consistent with organic acid-mediated AOM, both in Lacamas Lake and in other systems. Nevertheless, direct evidence of this pathway is still lacking and testing for this remains an important direction for future work. To this end, we identify several new avenues of research that would help quantify the role of organic acid-mediated AOM relative to other electron acceptors.


Anaerobic AQDS Lake Methane oxidation Organic acids Reactive transport modeling 



The authors thank M. Keith Birchfield for assistance with data organization, field, and lab work. We also appreciate helpful input from Anna Withington and Jason Keller in the early stages of paper development. Finally, we thank Marc Kramer for helpful feedback and comments on a draft version of this manuscript. Financial support for this work was provided by GEF/UNESCO-4500226031, USACE-IWR and NSF DEB1355211 to Harrison.

Supplementary material

10533_2017_356_MOESM1_ESM.docx (623 kb)
Supplementary material 1 (DOCX 622 kb)


  1. Bastviken D, Cole JJ, Pace ML, Van de Bogert MC (2008) Fates of methane from different lake habitats: connecting whole-lake budgets and CH4 emissions. J Geophys Res 113. doi:  10.1029/2007JG000608
  2. Bastviken D, Tranvik LJ, Downing JA, Crill PM, Enrich-Prast A (2011) Freshwater methane emissions offset the continental carbon sink. Science 331:50. doi: 10.1126/science.1196808 CrossRefGoogle Scholar
  3. Blees J, Niemann H, Wenk CB et al (2014) Micro-aerobic bacterial methane oxidation in the chemocline and anoxic water column of deep south-Alpine Lake Lugano (Switzerland). Limnol Oceanogr 59:311–324. doi: 10.4319/lo.2014.59.2.0311 CrossRefGoogle Scholar
  4. Blodau C, Deppe M (2012) Humic acid addition lowers methane release in peats of the Mer Bleue bog, Canada. Soil Biol Biochem 52:96–98. doi: 10.1016/j.soilbio.2012.04.023 CrossRefGoogle Scholar
  5. Borrel G, Jézéquel D, Biderre-Petit C, Morel-Desrosiers N, Morel J-P, Peyret P, Fonty G, Lehours A-C (2011) Production and consumption of methane in freshwater lake ecosystems. Res Microbiol 162:832–847. doi: 10.1016/j.resmic.2011.06.004 CrossRefGoogle Scholar
  6. Canfield DE, Stewart FJ, Thamdrup B, Brabandere LD, Dalsgaard T, Delong EF, Revsbech NP, Ulloa O (2010) A cryptic sulfur cycle in oxygen-minimum-zone waters off the Chilean coast. Science 330:1375–1378. doi: 10.1126/science.1196889 CrossRefGoogle Scholar
  7. Carlson K, Geiger NS, Waltz T, Grant M, Luzier J, Anglin D, Hough G (1985) Lacamas-Round Lake diagnostic and restoration analysis. Project D2925. Project D2925 Intergovernmental Resource CenterGoogle Scholar
  8. Cervantes FJ, van der Velde S, Lettinga G, Field JA (2000) Competition between methanogenesis and quinone respiration for ecologically important substrates in anaerobic consortia. FEMS Microbiol Ecol 34:161–171CrossRefGoogle Scholar
  9. Ciais P, Sabine G, Bala G et al (2013). Carbon and other biogeochemical cycles, In: Stocker TF, Qin D, Plattner G-K et al (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University PressGoogle Scholar
  10. Crowe SA, Katsev S, Leslie K et al (2011) The methane cycle in ferruginous Lake Matano. Geobiology 9:61–78. doi: 10.1111/j.1472-4669.2010.00257.x CrossRefGoogle Scholar
  11. Deemer BR, Harrison JA, Whitling EW (2011) Microbial dinitrogen and nitrous oxide production in a small eutrophic reservoir: an in situ approach to quantifying hypolimnetic process rates. Limnol Oceanogr 56:1189–1199. doi: 10.4319/lo.2011.56.4.1189 CrossRefGoogle Scholar
  12. Dick JM (2008) Calculation of the relative metastabilities of proteins using the CHNOSZ software package. Geochem Trans 9:10. doi: 10.1186/1467-4866-9-10 CrossRefGoogle Scholar
  13. Egger M, Rasigraf O, Sapart CJ et al (2015) Iron-mediated anaerobic oxidation of methane in brackish coastal sediments. Environ Sci Technol 49:277–283. doi: 10.1021/es503663z CrossRefGoogle Scholar
  14. Eller G, Kanel L, Kruger M (2005) Co-occurrence of aerobic and anaerobic methane oxidation in the water column of Lake Plu see. Appl Environ Microbiol 71:8925–8928. doi: 10.1128/AEM.71.12.8925-8928.2005 CrossRefGoogle Scholar
  15. Ettwig KF, Butler MK, Le Paslier D et al (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–548. doi: 10.1038/nature08883 CrossRefGoogle Scholar
  16. Fimmen RL, Cory RM, Chin Y-P, Trouts TD, McKnight DM (2007) Probing the oxidation–reduction properties of terrestrially and microbially derived dissolved organic matter. Geochim Cosmochim Acta 71:3003–3015. doi: 10.1016/j.gca.2007.04.009 CrossRefGoogle Scholar
  17. Heitmann T, Blodau C (2006) Oxidation and incorporation of hydrogen sulfide by dissolved organic matter. Chem Geol 235:12–20. doi: 10.1016/j.chemgeo.2006.05.011 CrossRefGoogle Scholar
  18. Heitmann T, Goldhammer T, Beer J, Blodau C (2007) Electron transfer of dissolved organic matter and its potential significance for anaerobic respiration in a northern bog. Glob Change Biol 13:1771–1785. doi: 10.1111/j.1365-2486.2007.01382.x CrossRefGoogle Scholar
  19. Hinrichs K-U, Boetius A (2002) The anaerobic oxidation of methane: new insights in microbial ecology and biogeochemistry. In: Wefer G, Billett D, Hebbeln D, Jørgensen BB, Schlüter M, Van Weering TCE (eds) Ocean margin systems. Springer, New york, pp 457–477CrossRefGoogle Scholar
  20. Itoh M, Kobayashi Y, Chen T-Y et al (2015) Effect of interannual variation in winter vertical mixing on CH4 dynamics in a subtropical reservoir. J Geophys Res Biogeosci 120:1246–1261. doi: 10.1002/2015JG002972 CrossRefGoogle Scholar
  21. Iversen N, Oremland RS, Klug MJ (1987) Big Soda Lake (Nevada). 3. Pelagic methanogenesis and anaerobic methane oxidation. Limnol Ocean 32:804–808CrossRefGoogle Scholar
  22. Kankaala P, Huotari J, Peltomaa E, Saloranta T, Ojala A (2006) Methanotrophic activity in relation to methane efflux and total heterotrophic bacterial production in a stratified, humic, boreal lake. Limnol Oceanogr 51:1195–1204. doi: 10.4319/lo.2006.51.2.1195 CrossRefGoogle Scholar
  23. Kappler A, Benz M, Schink B, Brune A (2004) Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment. FEMS Microbiol Ecol 47:85–92. doi: 10.1016/S0168-6496(03)00245-9 CrossRefGoogle Scholar
  24. Katsev S, Crowe SA, Mucci A, Sundby B, Nomosatryo S, Douglas Haffner G, Fowle DA (2010) Mixing and its effects on biogeochemistry in the persistently stratified, deep, tropical Lake Matano, Indonesia. Limnol Oceanogr 55:763CrossRefGoogle Scholar
  25. Keller JK, Weisenhorn PB, Megonigal JP (2009) Humic acids as electron acceptors in wetland decomposition. Soil Biol Biochem 41:1518–1522. doi: 10.1016/j.soilbio.2009.04.008 CrossRefGoogle Scholar
  26. Kellerman AM, Kothawala DN, Dittmar T, Tranvik LJ (2015) Persistence of dissolved organic matter in lakes related to its molecular characteristics. Nat Geosci 8:454–457. doi: 10.1038/ngeo2440 CrossRefGoogle Scholar
  27. Klüpfel L, Piepenbrock A, Kappler A, Sander M (2014) Humic substances as fully regenerable electron acceptors in recurrently anoxic environments. Nat Geosci 7:195–200. doi: 10.1038/ngeo2084 CrossRefGoogle Scholar
  28. Knittel K, Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 63:311–334. doi: 10.1146/annurev.micro.61.080706.093130 CrossRefGoogle Scholar
  29. Kojima H, Tokizawa R, Kogure K, Kobayashi Y, Itoh M, Shiah F-K, Okuda N, Fukui M (2014) Community structure of planktonic methane-oxidizing bacteria in a subtropical reservoir characterized by dominance of phylotype closely related to nitrite reducer. Sci Rep 4. doi: 10.1038/srep05728
  30. Lennon JT, Hamilton SK, Muscarella ME, Grandy AS, Wickings K, Jones SE (2013) A source of terrestrial organic carbon to investigate the browning of aquatic ecosystems. PLoS ONE 8:e75771. doi: 10.1371/journal.pone.0075771 CrossRefGoogle Scholar
  31. Lipson DA, Jha M, Raab TK, Oechel WC (2010) Reduction of iron (III) and humic substances plays a major role in anaerobic respiration in an Arctic peat soil. J Geophys Res 115. doi: 10.1029/2009JG001147
  32. Lopes F, Viollier E, Thiam A et al (2011) Biogeochemical modelling of anaerobic vs. aerobic methane oxidation in a meromictic crater lake (Lake Pavin, France). Appl Geochem 26:1919–1932. doi: 10.1016/j.apgeochem.2011.06.021 CrossRefGoogle Scholar
  33. Lovley DR, Coates JD, Blunt-Harris EL, Phillips EJP, Woodward JC (1996) Humic substances as electron acceptors for microbial respiration. Nature 382:445–448CrossRefGoogle Scholar
  34. Martinez CM, Alvarez LH, Celis LB, Cervantes FJ (2013) Humus-reducing microorganisms and their valuable contribution in environmental processes. Appl Microbiol Biotechnol 97:10293–10308. doi: 10.1007/s00253-013-5350-7 CrossRefGoogle Scholar
  35. Miller LG, Sasson C, Oremland RS (1998) Difluoromethane, a new and improved inhibitor of methanotrophy. Appl Environ Microbiol 64:4357–4362Google Scholar
  36. Milucka J, Kirf M, Lu L, Krupke A, Lam P, Littmann S, Kuypers MM, Schubert CJ (2015) Methane oxidation coupled to oxygenic photosynthesis in anoxic waters. ISME J 9:1991–2002. doi: 10.1038/ismej.2015.12 CrossRefGoogle Scholar
  37. Myhre G, Shindell D, Bréon F-M et al (2013) Anthropogenic and natural radiative forcing. In: Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University PressGoogle Scholar
  38. Nauhaus K, Treude T, Boetius A, Kruger M (2005) Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I and ANME-II communities. Environ Microbiol 7:98–106. doi: 10.1111/j.1462-2920.2004.00669.x CrossRefGoogle Scholar
  39. Oswald K, Milucka J, Brand A, Hach P, Littmann S, Wehrli B, Kuypers MMM, Schubert CJ (2016) Aerobic gammaproteobacterial methanotrophs mitigate methane emissions from oxic and anoxic lake waters: methane oxidation in Lake Zug. Oceanogr, Limnol. doi: 10.1002/lno.10312 Google Scholar
  40. Panganiban AT, Patt TE, Hart W, Hanson RS (1979) Oxidation of methane in the absence of oxygen in lake water samples. Appl Environ Microbiol 37:303–309Google Scholar
  41. Perdue EM, Ritchie JD (2003) Dissolved organic matter in freshwaters. Treatise Geochem 5:605Google Scholar
  42. Pimenov NV, Kallistova AY, Rusanov II et al (2010) Methane formation and oxidation in the meromictic oligotrophic Lake Gek-Gel (Azerbaijan). Microbiology 79:247–252. doi: 10.1134/S0026261710020177 CrossRefGoogle Scholar
  43. Reeburgh WS (2007) Oceanic methane biogeochemistry. Chem Rev 107:486–513. doi: 10.1021/cr050362v CrossRefGoogle Scholar
  44. Salas de León DA, Alcocer J, Ardiles Gloria V, Quiroz-Martínez B (2016) Estimation of the eddy diffusivity coefficient in a warm monomictic tropical Lake. J Limnol 75. doi: 10.4081/jlimnol.2016.1431
  45. Saxton MA, Samarkin VA, Schutte CA, Bowles MW, Madigan MT, Cadieux SB, Pratt LM, Joye SB (2016) Biogeochemical and 16S rRNA gene sequence evidence supports a novel mode of anaerobic methanotrophy in permanently ice-covered Lake Fryxell. Antarctica Limnol Oceanogr 61:119–130. doi: 10.1002/lno.10320 CrossRefGoogle Scholar
  46. Scheller S, Yu H, Chadwick GL, McGlynn SE, Orphan VJ (2016) Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction. Science 351:703–707CrossRefGoogle Scholar
  47. Schubert CJ, Lucas FS, Durisch-Kaiser E, Stierli R, Diem T, Scheidegger O, Vazquez F, Müller B (2010) Oxidation and emission of methane in a monomictic lake (Rotsee, Switzerland). Aquat Sci 72:455–466. doi: 10.1007/s00027-010-0148-5 CrossRefGoogle Scholar
  48. Segarra KEA, Comerford C, Slaughter J, Joye SB (2013) Impact of electron acceptor availability on the anaerobic oxidation of methane in coastal freshwater and brackish wetland sediments. Geochim Cosmochim Acta 115:15–30. doi: 10.1016/j.gca.2013.03.029 CrossRefGoogle Scholar
  49. Segarra KEA, Schubotz F, Samarkin V, Yoshinaga MY, Hinrichs K-U, Joye SB (2015) High rates of anaerobic methane oxidation in freshwater wetlands reduce potential atmospheric methane emissions. Nat Commun 6:7477. doi: 10.1038/ncomms8477 CrossRefGoogle Scholar
  50. Smemo KA, Yavitt JB (2011) Anaerobic oxidation of methane: an underappreciated aspect of methane cycling in peatland ecosystems? Biogeosciences 8:779–793. doi: 10.5194/bg-8-779-2011 CrossRefGoogle Scholar
  51. Soetaert K, Herman PMJ (2009) A practical guide to ecological modelling: using R as a simulation platform. Springer, New YorkCrossRefGoogle Scholar
  52. Soetaert K, Meysman F (2012) Reactive transport in aquatic ecosystems: rapid model prototyping in the open source software R. Environ Model Softw 32:49–60. doi: 10.1016/j.envsoft.2011.08.011 CrossRefGoogle Scholar
  53. Stolper DA, Revsbech NP, Canfield DE (2010) Aerobic growth at nanomolar oxygen concentrations. Proc Natl Acad Sci 107:18755–18760CrossRefGoogle Scholar
  54. Uchimiya M, Stone AT (2009) Reversible redox chemistry of quinones: impact on biogeochemical cycles. Chemosphere 77:451–458. doi: 10.1016/j.chemosphere.2009.07.025 CrossRefGoogle Scholar
  55. Valenzuela EI, Prieto-Davó A, López-Lozano NE et al (2017) Anaerobic methane oxidation driven by microbial reduction of natural organic matter in a tropical wetland. Appl Environ Microbiol AEM.00645-17. doi: 10.1128/AEM.00645-17
  56. Weiss RF, Price BA (1980) Nitrous oxide solubility in water and seawater. Mar Chem 8:347–359. doi: 10.1016/0304-4203(80)90024-9 CrossRefGoogle Scholar
  57. Wik M, Varner RK, Anthony KW, MacIntyre S, Bastviken D (2016) Climate-sensitive northern lakes and ponds are critical components of methane release. Nat Geosci 9:99–105. doi: 10.1038/ngeo2578 CrossRefGoogle Scholar
  58. Yoshinaga MY, Holler T, Goldhammer T et al (2014) Carbon isotope equilibration during sulphate-limited anaerobic oxidation of methane. Nat Geosci 7:190–194. doi: 10.1038/ngeo2069 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of the EnvironmentWashington State University VancouverVancouverUSA
  2. 2.U.S. Geological SurveySouthwest Biological Science CenterFlagstaffUSA
  3. 3.Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea ResearchUtrecht UniversityDen BurgThe Netherlands

Personalised recommendations