, Volume 134, Issue 1–2, pp 77–94 | Cite as

Carbon quantity and quality drives variation in cave microbial communities and regulates Mn(II) oxidation

  • Mara L. C. Cloutier
  • Sarah K. Carmichael
  • Michael A. Carson
  • Michael D. Madritch
  • Suzanna L. Bräuer


Cave ecosystems are carbon limited and thus are particularly susceptible to anthropogenic pollution. Yet, how carbon quality and quantity that can modulate the pathways and amount of Mn cycling in caves remains largely unknown. To explore Mn cycling, baseline bacterial, archaeal, and fungal communities associated with Mn(III/IV) oxide deposits were assessed in both relatively ‘pristine’ and anthropogenically impacted caves in the Appalachian Mountains (USA). Cave sites were then amended with various carbon sources that are commonly associated with anthropogenic input to determine whether they stimulate biotic Mn(II) oxidation in situ. Results revealed patterns between sites that had long-term exogenous carbon loading compared to sites that were relatively ‘pristine,’ particularly among Bacteria and Archaea. Carbon treatments that stimulated Mn(II) oxidation at several sites resulted in significant changes to the microbial communities, indicating that anthropogenic input can not only enhance biotic Mn(II) oxidation, but also shape community structure and diversity. Additional carbon sources amended with copper were incubated at various cave sites to test the role that Cu(II) plays in in situ biotic Mn(II) oxidation. Media supplemented with 100 µM Cu(II) inhibited bacterial Mn(II) oxidation but stimulated fungal Mn(II) oxidation, implicating fungal use of multicopper oxidase (MCO) enzymes but bacterial use of superoxide to oxidize Mn(II). In sites with low C:N ratios, the activity of the Mn(II) oxidizing enzyme manganese peroxidase (MnP) appears to be limited (particularly by MnP-utilizing Basidiomycetes and/or Zygomycetes).


Manganese oxidation Caves Exogenous carbon Fungal communities Bacterial communities Enzyme 



Leucoberbelin blue


Manganese peroxidase


Multicopper oxidase


Non-metric multidimensional scaling


Principal component analysis


Soil organic matter


Total carbon


Total nitrogen


Total organic carbon

Supplementary material

10533_2017_343_MOESM1_ESM.pdf (2.7 mb)
Supplementary material 1 (PDF 2728 kb)


  1. Allison SD (2005) Cheaters, diffusion and nutrients constrain decomposition by microbial enzymes in spatially structured environments. Ecol Lett 8:626–635CrossRefGoogle Scholar
  2. Allison SD (2014) Modeling adaptation of carbon use efficiency in microbial communities. Front Microbiol. doi:10.3389/fmicb.2014.00571 Google Scholar
  3. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410CrossRefGoogle Scholar
  4. Andeer PF, Learman DR, McIlvin M et al (2015) Extracellular heme peroxidases mediate Mn(II) oxidation in a marine Roseobacter bacterium via superoxide production. Environ Microbiol. doi:10.1111/1462-2920-12893 Google Scholar
  5. Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47:151–163CrossRefGoogle Scholar
  6. Bohu T, Santelli CM, Akob DM et al (2015) Characterization of pH dependent Mn(II) oxidation strategies and formation of a bixbyite-like phase by Mesorhizobium australicum T-G1. Front Microbiol. doi:10.3389/fmicb.2015.00734 Google Scholar
  7. Bonugli-Santos RC, Durrant LR, da Silva M et al (2009) Production of laccase, manganese peroxidase and lignin peroxidase by Brazilian marine-derived fungi. Enzyme Microb Tech. doi:10.1016/j.enzmictec.2009.07.014 Google Scholar
  8. Bowles TM, Acosta-Martinez V, Calderon F et al (2014) Soil enzyme activities, microbial communities, and carbon and nitrogen availability in organic agroecosystems across an intensively-managed agricultural landscape. Soil Biol Biochem 68:252–262CrossRefGoogle Scholar
  9. Brouwers GJ, de Vrind JPM, Corstjens PLAM et al (1999) cumA, a gene encoding a multicopper oxidase, is involved in Mn(II) oxidation in Pseudomonas putida GB-1. Appl Environ Microb 65(4):1762–1768Google Scholar
  10. Brouwers GJ, Corstjens PLAM, De Vrind JPM et al (2000) Stimulation of Mn(II) oxidation in Leptothrix discophora SS-1 by Cu(II) and sequence analysis of the region flanking the gene encoding putative multicopper oxidase MofA. Geomicrobiol J 17(1):25–33CrossRefGoogle Scholar
  11. Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336CrossRefGoogle Scholar
  12. Caporaso JG, Lauber CL, Walters WA et al (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME 6(8):1621–1624CrossRefGoogle Scholar
  13. Carmichael SK, Bräuer SL (2015) Microbial diversity and manganese cycling: a review of Mn-oxidizing microbial cave communities. De Gruyter, BerlinGoogle Scholar
  14. Carmichael MJ, Carmichael SK, Santelli CM et al (2013a) Mn(II)-oxidizing bacteria are abundant and environmentally relevant members of ferromanganese deposits in caves of the upper Tennessee River Basin. Geomicrobiol J 30(9):779–800CrossRefGoogle Scholar
  15. Carmichael S, Carmichael M, Strom A et al (2013b) Sustained anthropogenic impact in Carter Saltpeter Cave, Carter County, Tennessee and the potential effects on manganese cycling. J Cave Karst Stud 75(3):189–204CrossRefGoogle Scholar
  16. Carmichael SK, Zorn BT, Roble LA et al (2015) Nutrient input influences fungal community composition and size and can stimulate Mn(II) oxidation in caves. Environ Microbiol 7(4):592–605CrossRefGoogle Scholar
  17. Chen H, Marhan S, Billen N et al (2009) Soil organic-carbon and total nitrogen stocks as affected by different land uses in Baden-Wurttemberg (southwest Germany). J Plant Nutr 172:32–42CrossRefGoogle Scholar
  18. DeSantis TZ, Hugenholtz P, Larsen N et al (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microb 72(7):5069–5072CrossRefGoogle Scholar
  19. Dick GJ, Clement BG, Webb SM et al (2009) Enzymatic microbial Mn(II) oxidation and Mn biooxide production in the Guaymas Basin deep-sea hydrothermal plume. Geochem Cosmochim Ac 73:6517–6530CrossRefGoogle Scholar
  20. Duckworth OW, Bargar JR, Sposito G (2009) Coupled biogeochemical cycling of iron and manganese as mediated by microbial siderophores. Biometals 22(4):605–613CrossRefGoogle Scholar
  21. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460–2461CrossRefGoogle Scholar
  22. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10(10):996–998CrossRefGoogle Scholar
  23. Edgar RC, Haas BJ, Clemente JC et al (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27(16):2194–2200CrossRefGoogle Scholar
  24. Eilers KG, Lauber CL, Knight R et al (2010) Shifts in bacterial community structure associated with inputs of low molecular weight carbon compounds in soil. Soil Biol Biochem 42:896–903CrossRefGoogle Scholar
  25. El Gheriany IA, Bocioaga D, Hay AG et al (2011) An uncertain role for Cu(II) in stimulating Mn(II) oxidation by Leptothrix discophora SS-1. Arch Microbiol 193(2):89–93CrossRefGoogle Scholar
  26. Geszvain K, McCarthy JK, Tebo BM (2013) Elimination of manganese(II, III) oxidation in Pseudomonas putida GB-1 by a double knockout of two putative multicopper oxidase genes. Appl Environ Microb 79(1):357–366CrossRefGoogle Scholar
  27. Goldfarb KC, Karaoz U, Hanson CA et al (2011) Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance. Front Microbiol. doi:10.3389/fmicb.2011.00094 Google Scholar
  28. Hansel CM, Zeiner CA, Santelli CM et al (2012) Mn(II) oxidation by an Ascomycete fungus is linked to superoxide production during asexual reproduction. PNAS 109(31):12621–12625CrossRefGoogle Scholar
  29. Hofer C, Schlosser D (1999) Novel enzymatic oxidation of Mn(II) to Mn(III) catalyzed by a fungal laccase. Fed Eur Biochem Soc 451:186–190CrossRefGoogle Scholar
  30. Hofrichter M (2002) Review: lignin conversion by manganese peroxidase (MnP). Enzyme Microb Tech 30:454–466CrossRefGoogle Scholar
  31. Holsinger JR (1975) Descriptions of virginia caves. Virginia Division of Mineral Resources, CharlottesvilleGoogle Scholar
  32. Ikner LA, Toomey RS, Nolan G et al (2007) Culturable microbial diversity and the impact of tourism in Kartchner Caverns, Arizona. Microb Ecol 53(1):30–42CrossRefGoogle Scholar
  33. Kõljalg U, Nilsson RH, Abarenkov K et al (2013) Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol 22(21):5271–5277CrossRefGoogle Scholar
  34. Kuan I, Johnson KA, Tien M (1993) Kinetic analysis of manganese peroxidases. J Biol Chem 268(27):20064–20070Google Scholar
  35. Larsen EI, Sly LI, McEwan AG (1999) Manganese(II) adsorption and oxidation by whole cells and a membrane fraction of Pedomicrobium sp. ACM 3067. Arch Microbiol 171(4):257–264CrossRefGoogle Scholar
  36. Lauber CL, Ramirez KS, Aanderud Z et al (2013) Temporal variability in soil microbial communities across land-use types. ISME 7(8):1641–1650CrossRefGoogle Scholar
  37. Learman DR, Voelker BM, Vazquez-Rodriguez AI et al (2011) Formation of manganese oxides by bacterially generated superoxide. Nat Geosci 4:95–98CrossRefGoogle Scholar
  38. Learman DR, Voelker BM, Madden AS et al (2013) Constraints on superoxide mediated formation of manganese oxides. Front Microbiol 4:1–11CrossRefGoogle Scholar
  39. Luther GW (2010) The role of one- and two-electron transfer reactions in forming thermodynamically unstable intermediates as barriers in multi-electron redox reactions. Aquat Geochem 16(3):395–420CrossRefGoogle Scholar
  40. Mandal SD, Panda AK, Lalnunmawii E et al (2015a) Illumina-based analysis of bacterial community in Khuangcherapuk cave of Mizoram, Northeast India. Genom Data 5:13–14CrossRefGoogle Scholar
  41. Mandal SD, Sanga Z, Kumar NS (2015b) Metagenome sequencing reveals Rhodococcus dominance in Farpuk Cave, Mizoram, Inidia, an eastern Himalayan biodiversity hot spot region. Genome Announc 3(3):e00610–e00615CrossRefGoogle Scholar
  42. Marques ELS, Dias JCT, Silva GS et al (2016) Effect of organic matter enrichment on the fungal community in limestone cave sediments. Genet Mol Res. doi:10.4238/gmr.15038611 Google Scholar
  43. Masella AP, Bartram AK, Truszkowski JM et al (2012) PANDAseq: paired-end assembler for illumina sequences. BMC Bioinform 13(1):31CrossRefGoogle Scholar
  44. Matsuura S, Sasaki H, Kohyama K (2012) Organic carbon stocks in grassland soils and their spatial distribution in Japan. Jpn Soc Grassl Sci 58:79–93CrossRefGoogle Scholar
  45. McDonald D, Clemente JC, Kuczynski J et al (2012) The biological observation matrix (BIOM) format or: how I learned to stop worrying and love the ome-ome. GigaScience 1(1):7CrossRefGoogle Scholar
  46. McMurdie PJ, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8(4):e61217CrossRefGoogle Scholar
  47. Moorhead DL, Lashermes G, Sinsabaugh RL et al (2013) Calculating co-metabolic costs of lignin decay and their impacts on carbon use efficiency. Soil Biol Biochem 66:17–19CrossRefGoogle Scholar
  48. Mulder EG (1989) Leptothrix Kützing 1843, 184 AL. In: Staley JT, Bryant MP, Pfenning N, Holt JG (eds) Bergey’s Manual® of Systematic Bacteriology. Williams and Wilkins, Baltimore, pp 1998–2003Google Scholar
  49. Mulder EG, Van Veen WL (1963) Investigations on the Spaerotilus-Leptothrix group. Antonie Van Leeuwenhoek 29:121–153CrossRefGoogle Scholar
  50. Neuwirth R (2014) RColorBrewer: ColorBrewer palettesGoogle Scholar
  51. Oksanen J, Blanchet FG, Kindt R et al (2016) Vegan: community ecology packageGoogle Scholar
  52. Ortiz M, Neilson JW, Nelson WM et al (2012) Profiling bacterial diversity and taxonomic compostion on speleothem surfaces in Kartchner Caverns, AZ. Environ Microbiol 65(2):371–383Google Scholar
  53. Price MN, Dehal PS, Arkin AP (2010) FastTree 2-Approximately maximum-likelihood trees for large alignments. PLoS ONE 5(3):e9490CrossRefGoogle Scholar
  54. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  55. Raymann K, Moeller AH, Goodman AL et al (2017) Unexplored archaeal diversity in the Great Ape gut microbiome. mSphere 2(1):e00026-17Google Scholar
  56. Ruiz-Duenas FJ, Morales M, Perez-Boada M et al (2007) Manganese oxidation site in Pleurotus eryngii versatile peroxidase: a site-directed mutagenesis, kinetic, and crystallographic study. Biochemistry 46:66–77CrossRefGoogle Scholar
  57. Santelli CM, Pfister DH, Lazarus D et al (2010) Promotion of Mn(II) oxidation and remediation of coal mine drainage in passive treatment systems by diverse fungal and bacterial communities. Appl Environ Microb 76(14):4871–4875CrossRefGoogle Scholar
  58. Santelli CM, Webb SM, Dohnalkova AC et al (2011) Diversity of Mn oxides produced by Mn(II)-oxidizing fungi. Geochem Cosmochim Ac 75(10):2762–2776CrossRefGoogle Scholar
  59. Shapiro J, Pringle A (2010) Anthropogenic influences on the diversity of fungi isolated from caves in Kentucky and Tennessee. Am Midl Nat 163(1):76–86CrossRefGoogle Scholar
  60. Simon KS, Buikema AL Jr (1997) Effects of organic pollution on an Appalachian cave: changes in macroinvertebrate populations and food supplies. Am Midl Nat 138(2):387–401CrossRefGoogle Scholar
  61. Sinsabaugh RL, Manzoni S, Moorhead DL et al (2013) Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling. Ecol Lett 16(7):930–939CrossRefGoogle Scholar
  62. Sunda WG, Kieber DJ (1994) Oxidation of humic substances by manganese oxides yields low-molecular-weight organic substrates. Nature 367(6458):62–64CrossRefGoogle Scholar
  63. Tang Y, Zeiner CA, Santelli CM et al (2013) Fungal oxidative dissolution of the Mn(II)-bearing mineral rhodochrosite and the role of metabolites in manganese oxide formation. Environ Microbiol 15(4):1063–1077CrossRefGoogle Scholar
  64. Thompson IA, Huber DM, Schulze DG (2006) Evidence of a multicopper oxidase in Mn oxidation by Gaeumannomyces grainis var. tritici. Biochem Cell Biol 96(2):130–136Google Scholar
  65. van Bemmelen JM (1891) Ueber die Bestimmungen des Wassers, des Humus, des Schwefels, der in den Colloidalen Silikaten gebunden Kieselsaeueren, des manganese, u.s.w. im Ackerboden. Landwirtsch Vers Stn 37:279–290Google Scholar
  66. Vanderwolf KJ, Malloch D, McAlpine DF et al (2013) A world review of fungi, yeasts, and slime molds in caves. Int J Speleol 42(1):77–96CrossRefGoogle Scholar
  67. Wang Q, Garrity GM, Tiedje JM et al (2007) Naive Bayesian classifier for rapid assignment for rRNA sequences into the new bacterial taxonomy. Appl Environ Microb 73(16):5261–5267CrossRefGoogle Scholar
  68. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New YorkGoogle Scholar
  69. Yin H, Liu F, Feng X et al (2011) Co(II)-exchange mechanism of birnessite and its application for the removal of Pb(II) and As(III). J Hazard Mater 196:318–326CrossRefGoogle Scholar
  70. Yu K, Zhang T (2012) Metagenomic and metatranscriptomic analysis of microbial community structure and gene expression of activated sludge. PLoS ONE 7(5):e38183CrossRefGoogle Scholar
  71. Zorn BT (2014) Illumina sequencing of fungal assemblages reveals compositional shifts as a result of nutrient loading within cave sediments. M.S. Thesis: 56Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of BiologyAppalachian State UniversityBooneUSA
  2. 2.Department of Ecosystem Science and ManagementPennsylvania State UniversityUniversity ParkUSA
  3. 3.Department of GeologyAppalachian State UniversityBooneUSA
  4. 4.Department of BiologyLaurentian UniversitySudburyUSA
  5. 5.The Vale Living with Lakes CentreSudburyUSA

Personalised recommendations