Advertisement

Biogeochemistry

, Volume 133, Issue 1, pp 73–87 | Cite as

Elevated CO2 and nitrogen addition accelerate net carbon gain in a brackish marsh

  • Melissa A. Pastore
  • J. Patrick Megonigal
  • J. Adam Langley
Article

Abstract

Wetlands have an inordinate influence on the global greenhouse gas budget, but how global changes may alter wetland contribution to future greenhouse gas fluxes is poorly understood. We determined the greenhouse gas balance of a tidal marsh exposed to nine years of experimental carbon dioxide (CO2) and nitrogen (N) manipulation. We estimated net carbon (C) gain rates by measuring changes in plant and soil C pools over nine years. In wetland soils that accrete primarily through organic matter inputs, long-term measurements of soil elevation, along with soil C density, provide a robust estimate of net soil C gain. We used net soil C gain along with methane and nitrous oxide fluxes to determine the radiative forcing of the marsh under elevated CO2 and N addition. Nearly all plots exhibited a net gain of C over the study period (up to 203 g C m−2 year−1), and C gain rates were greater with N and CO2 addition. Treatment effects on C gain and methane emissions dominated trends in radiative forcing while nitrous oxide fluxes in all treatments were negligible. Though these soils experience salinities that typically suppress methane emissions, our results suggest that elevated CO2 can stimulate methane emissions, overcoming positive effects of elevated CO2 on C gain, converting brackish marshes that are typically net greenhouse gas sinks into sources. Adding resources, either CO2 or N, will likely increase “blue carbon” accumulation rates in tidal marshes, but importantly, each resource can have distinct influences on the direction of total greenhouse forcing.

Keywords

Carbon gain CO2 enrichment Nitrous oxide Greenhouse gases Methane Nitrogen pollution 

Notes

Acknowledgements

The authors thank J. Duls, G. Peresta, and A. Peresta for assistance with data collection and maintenance of the experiment and treatments at the Smithsonian Global Change Research Wetland. We also thank M. Vile for technical insight, as well as two anonymous reviewers for the helpful insights. This work was supported by National Science Foundation-LTREB Program Grants DEB-0950080 and DEB-1457100, the Smithsonian Institution, and Villanova University.

Supplementary material

10533_2017_312_MOESM1_ESM.pdf (118 kb)
Supplementary material 1 (PDF 118 kb)

References

  1. Alam MS, Jia Z (2012) Inhibition of methane oxidation by nitrogenous fertilizers in a paddy soil. Front Microbiol 3(246):1–13Google Scholar
  2. Anisfeld SC, Hill TD (2012) Fertilization effects on elevation change and belowground carbon balance in a Long Island Sound tidal marsh. Estuaries Coasts 35(1):201–211CrossRefGoogle Scholar
  3. Barnard R, Leadley PW, Hungate BA (2005) Global change, nitrification, and denitrification: a review. Glob Biogeochem Cycles 19(1):1–13CrossRefGoogle Scholar
  4. Bodelier PLE, Laanbroek HJ (2004) Nitrogen as a regulatory factor of methane oxidation in soils and sediments. FEMS Microbiol Ecol 47(3):265–277CrossRefGoogle Scholar
  5. Bowden WB (1986) Gaseous nitrogen emmissions from undisturbed terrestrial ecosystems: an assessment of their impacts on local and global nitrogen budgets. Biogeochemistry 2(3):249–279CrossRefGoogle Scholar
  6. Brown JR, Blankinship JC, Niboyet A, van Groenigen KJ, Dijkstra P, Le Roux X, Leadley PW, Hungate BA (2012) Effects of multiple global change treatments on soil N2O fluxes. Biogeochemistry 109(1–3):85–100CrossRefGoogle Scholar
  7. Chmura GL, Anisfeld SC, Cahoon DR, Lynch JC (2003) Global carbon sequestration in tidal, saline wetland soils. Glob Biogeochem Cycles 17(4):1–12CrossRefGoogle Scholar
  8. Collins M, Knutti R, Arblaster JM, Dufresne JL, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G (2013) Long-term climate change: projections, commitments and irreversibility. In: Climate change 2013: the physical science basis. contribution of working group i to the fifth assessment report of the intergovernmental panel on climate change [Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  9. Conrad R, Rothfuss F (1991) Methane oxidation in the soil surface layer of a flooded rice field and the effect of ammonium. Biol Fertil Soils 12(1):28–32CrossRefGoogle Scholar
  10. Dacey JWH, Drake BG, Klug MJ (1994) Stimulation of methane emission by carbon dioxide enrichment of marsh vegetation. Nature 340(6484):47–49CrossRefGoogle Scholar
  11. Deegan LA, Johnson DS, Warren RS, Peterson BJ, Fleeger JW, Fagherazzi S, Wollheim WM (2012) Coastal eutrophication as a driver of salt marsh loss. Nature 490(7420):388–392CrossRefGoogle Scholar
  12. Doughty CL, Langley JA, Walker WS, Feller IC, Schaub R, Chapman SK (2015) Mangrove range expansion rapidly increases coastal wetland carbon storage. Estuaries Coasts 39(2):385–396CrossRefGoogle Scholar
  13. Graham SA, Mendelssohn IA (2014) Coastal wetland stability maintained through counterbalancing accretionary responses to chronic nutrient enrichment. Ecology 95(12):3271–3283CrossRefGoogle Scholar
  14. Gulledge J, Schimel JP (1998) Low-concentration kinetics of atmospheric CH4 oxidation in soil and mechanism of NH4 + inhibition. Appl Environ Microbiol 64(11):4291–4298Google Scholar
  15. Hamersley MR, Howes BL (2005) Coupled nitrification-denitrification measured in situ in a Spartina alterniflora marsh with a 15NH4 + tracer. Mar Ecol Prog Ser 299:123–135CrossRefGoogle Scholar
  16. Hartmann, DL, Klein Tank AMG, Rusticucci M, Alexander LV, Brönnimann S, Charabi Y, Dentener FJ, Dlugokencky EJ, Easterling DR, Kaplan A, Soden BJ, Thorne PW, Wild M, Zhai PM (2013) Observations: atmosphere and surface. In: Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change [Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  17. Irvine IC, Vivanco L, Bentley PN, Martiny JBH (2012) The effect of nitrogen enrichment on C1-cycling microorganisms and methane flux in salt marsh sediments. Front Microbiol 3(90):142–151Google Scholar
  18. Keller JK, Wolf AA, Weisenhorn PB, Drake BG, Megonigal JP (2009) Elevated CO2 affects porewater chemistry in a brackish marsh. Biogeochemistry 96(1):101–117CrossRefGoogle Scholar
  19. Kemp WM, Boynton WR, Adolf JE, Boesch DF, Boicourt WC, Brush G, Cornwell JC, Fisher TR, Glibert PM, Hagy JD (2005) Eutrophication of Chesapeake Bay: historical trends and ecological interactions. Mar Ecol Prog Ser 303(21):1–29CrossRefGoogle Scholar
  20. Kinney EL, Valiela I (2013) Changes in δ15N in salt marsh sediments in a long-term fertilization study. Mar Ecol Prog Ser 477:41–52CrossRefGoogle Scholar
  21. Kirwan ML, Guntenspergen GR (2012) Feedbacks between inundation, root production, and shoot growth in a rapidly submerging brackish marsh. J Ecol 100(3):764–770CrossRefGoogle Scholar
  22. Langley JA, Megonigal JP (2010) Ecosystem response to elevated CO2 levels limited by nitrogen-induced plant species shift. Nature 466(7302):96–99CrossRefGoogle Scholar
  23. Langley JA, McKee KL, Cahoon DR, Cherry JA, Megonigal JP (2009a) Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise. Proc Natl Acad Sci 106(15):6182–6186CrossRefGoogle Scholar
  24. Langley JA, Sigrist MV, Duls J, Cahoon DR, Lynch JC, Megonigal JP (2009b) Global change and marsh elevation dynamics: experimenting where land meets sea and biology meets geology. Smithson Contrib Mar Sci 38:391–400CrossRefGoogle Scholar
  25. Langley JA, Mozdzer TJ, Shepard KA, Hagerty SB, Patrick Megonigal J (2013) Tidal marsh plant responses to elevated CO2, nitrogen fertilization, and sea level rise. Glob Change Biol 19(5):1495–1503CrossRefGoogle Scholar
  26. Le Mer J, Roger P (2001) Production, oxidation, emission and consumption of methane by soils: a review. Eur J Soil Biol 37(1):25–50CrossRefGoogle Scholar
  27. Liu L, Greaver TL (2009) A review of nitrogen enrichment effects on three biogenic GHGs: the CO2 sink may be largely offset by stimulated N2O and CH4 emission. Ecol Lett 12(10):1103–1117CrossRefGoogle Scholar
  28. Marsh AS, Rasse DP, Drake BG, Megonigal JP (2005) Effect of elevated CO2 on carbon pools and fluxes in a brackish marsh. Estuaries 28(5):694–704CrossRefGoogle Scholar
  29. McLeod E, Chmura GL, Bouillon S, Salm R, Björk M, Duarte CM, Lovelock CE, Schlesinger WH, Silliman BR (2011) A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front Ecol Environ 9(10):552–560CrossRefGoogle Scholar
  30. Megonigal JP, Schlesinger WH (1997) Enhanced CH4 emission from a wetland soil exposed to elevated CO2. Biogeochemistry 37(1):77–88CrossRefGoogle Scholar
  31. Megonigal JP, Schlesinger W (2002) Methane-limited methanotrophy in tidal freshwater swamps. Glob Biogeochem Cycles 16(4):1–10CrossRefGoogle Scholar
  32. Morris JT, Bradley PM (1999) Effects of nutrient loading on the carbon balance of coastal wetland sediments. Limnol Oceanogr 44(3):699–702CrossRefGoogle Scholar
  33. Morris JT, Nyman JA, Shaffer GP (2014) The influence of nutrients on the coastal wetlands of the Mississippi delta. Perspectives on the restoration of the Mississippi Delta. Springer, Netherlands, pp 111–123CrossRefGoogle Scholar
  34. Mou X, Liu X, Tong C, Sun Z (2014) Responses of CH4 emissions to nitrogen addition and Spartina alterniflora invasion in Minjiang River estuary, southeast of China. Chin Geogr Sci 24(5):562–574CrossRefGoogle Scholar
  35. Myhre G, Shindell D, Bréon F-M, Collins W, Fuglestvedt JS, Huang J, Koch D, Lamarque J-F, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H (2013) Anthropogenic and natural radiative forcing. In: Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge [Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. pp 659–740Google Scholar
  36. Neubauer SC, Megonigal JP (2015) Moving beyond global warming potentials to quantify the climatic role of ecosystems. Ecosystems 18(6):1000–1013CrossRefGoogle Scholar
  37. Niboyet A, Le Roux X, Dijkstra P, Hungate BA, Barthes L, Blankinship JC, Brown JR, Field CB, Leadley PW (2011) Testing interactive effects of global environmental changes on soil nitrogen cycling. Ecosphere 2(5): art56Google Scholar
  38. Olsson L, Ye S, Yu X, Wei M, Krauss KW, Brix H (2015) Factors influencing CO2 and CH4 emissions from coastal wetlands in the Liaohe Delta, Northeast China. Biogeosci Discuss 12(4):3469–3503CrossRefGoogle Scholar
  39. Orr CH, Predick KI, Stanley EH, Rogers KL (2014) Spatial autocorrelation of denitrification in a restored and a natural floodplain. Wetlands 34(1):89–100CrossRefGoogle Scholar
  40. Pastore MA, Megonigal JP, Langley JA (2016) Elevated CO2 promotes long-term nitrogen accumulation only in combination with nitrogen addition. Glob Change Biol 22(1):391–403CrossRefGoogle Scholar
  41. Pendleton L, Donato DC, Murray BC, Crooks S, Jenkins WA, Sifleet S, Craft C, Fourqurean JW, Kauffman JB, Marbà N (2012) Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLoS ONE 7(9):e43542CrossRefGoogle Scholar
  42. Poffenbarger HJ, Needelman BA, Megonigal JP (2011) Salinity influence on methane emissions from tidal marshes. Wetlands 31(5):831–842CrossRefGoogle Scholar
  43. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/
  44. Reinhardt M, Müller B, Gächter R, Wehrli B (2006) Nitrogen removal in a small constructed wetland: an isotope mass balance approach. Environ Sci Technol 40(10):3313–3319CrossRefGoogle Scholar
  45. Shrestha J, Niklaus PA, Frossard E, Samaritani E, Huber B, Barnard RL, Schleppi P, Tockner K, Luster J (2012) Soil nitrogen dynamics in a river floodplain mosaic. J Environ Qual 41(6):2033–2045CrossRefGoogle Scholar
  46. Smith CJ, DeLaune RD, Patrick WH (1983) Carbon dioxide emission and carbon accumulation in coastal wetlands. Estuar Coast Shelf Sci 17(1):21–29CrossRefGoogle Scholar
  47. Smith KA, Dobbie KE, Ball BC, Bakken LR, Sitaula BK, Hansen S, Brumme R, Borken W, Christensen S, Priemé A (2000) Oxidation of atmospheric methane in Northern European soils, comparison with other ecosystems, and uncertainties in the global terrestrial sink. Glob Change Biol 6(7):791–803CrossRefGoogle Scholar
  48. van Groenigen KJ, Osenberg CW, Hungate BA (2011) Increased soil emissions of potent greenhouse gases under increased atmospheric CO2. Nature 475(7355):214–216CrossRefGoogle Scholar
  49. VanZomeren CM, White JR, DeLaune RD (2012) Fate of nitrate in vegetated brackish coastal marsh. Soil Sci Soc Am J 76(5):1919–1927CrossRefGoogle Scholar
  50. Wang H, Liao G, D’Souza M, Yu X, Yang J, Yang X, Zheng T (2015) Temporal and spatial variations of greenhouse gas fluxes from a tidal mangrove wetland in Southeast China. Environ Sci Pollut Res 23(2):1873–1885CrossRefGoogle Scholar
  51. Weston NB, Neubauer SC, Velinsky DJ, Vile MA (2014) Net ecosystem carbon exchange and the greenhouse gas balance of tidal marshes along an estuarine salinity gradient. Biogeochemistry 120(1–3):163–189CrossRefGoogle Scholar
  52. Whalen SC (2005) Biogeochemistry of methane exchange between natural wetlands and the atmosphere. Environ Eng Sci 22(1):73–94CrossRefGoogle Scholar
  53. White DS, Howes BL (1994) Long-term 15N-nitrogen retention in the vegetated sediments of a New England salt marsh. Limnol Oceanogr 39(8):1878–1892CrossRefGoogle Scholar
  54. White JR, Reddy KR (1999) Influence of nitrate and phosphorus loading on denitrifying enzyme activity in Everglades wetland soils. Soil Sci Soc Am J 63(6):1945–1954CrossRefGoogle Scholar
  55. Wolf AA, Drake BG, Erickson JE, Megonigal JP (2007) An oxygen-mediated positive feedback between elevated carbon dioxide and soil organic matter decomposition in a simulated anaerobic wetland. Glob Change Biol 13(9):2036–2044CrossRefGoogle Scholar
  56. Zhang Y, Ding W, Cai Z, Valerie P, Han F (2010) Response of methane emission to invasion of Spartina alterniflora and exogenous N deposition in the coastal salt marsh. Atmos Environ 44(36):4588–4594CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of BiologyVillanova UniversityVillanovaUSA
  2. 2.Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulUSA
  3. 3.Smithsonian Environmental Research CenterEdgewaterUSA

Personalised recommendations