, Volume 132, Issue 3, pp 273–292 | Cite as

Do storm synoptic patterns affect biogeochemical fluxes from temperate deciduous forest canopies?

  • C. M. Siegert
  • D. F. Levia
  • D. J. Leathers
  • J. T. Van Stan
  • M. J. Mitchell


The volumetric quantity and biogeochemical quality of throughfall and stemflow in forested ecosystems are influenced by biological characteristics as well environmental and storm meteorological conditions. Previous attempts at connecting forest water and nutrient cycles to storm characteristics have focused on individual meteorological variables, but we propose a unified approach by examining the storm system in its entirety. In this study, we use methods from synoptic climatology to distinguish sub-canopy biogeochemical fluxes between storm events to understand the response of forest ecosystems to daily weather patterns. For solute inputs tied to atmospheric deposition (NH4+, NO3, SO42−, Na+, Cl), stagnant air masses resulted in high inputs in rainfall (273.42, 81.81, 52.30, 156.99, 128.70 μmol L−1), throughfall (355.05, 130.66, 83.24, 239.55, 261.32 μmol L−1), and stemflow (338.34, 182.75, 153.74, 125.75, 272.88 μmol L−1). For inputs tied to canopy exchange (DOC, K+, Ca2+, Mg2+), a clear distinction was observed between throughfall and stemflow pathways. The largest throughfall concentrations were in the Great Lakes Low (1794.80, 352.96, 72.75, 74.37 μmol L−1) while the largest stemflow concentrations were in the Weak Upper Trough (3681.78, 497.34, 82.36, 72.46 μmol L−1). Stemflow leaching is likely derived from a larger reservoir of leachable cations in the tree canopy than throughfall, with stemflow fluxes maximized during synoptic types with greater rainfall amounts and throughfall fluxes diluted. For flux-based enrichment ratios, water volume, storm magnitude, antecedent dry period, and seasonality were important factors, further illustrating the influence of synoptic characteristics on wash-off, leaching and, ultimately, dilution processes within the canopy.


Throughfall Stemflow Forest hydrology Forest biogeochemistry Synoptic climatology 



The authors would like to acknowledge the financial support received from the US National Science Foundation (Ref. Nos. EAR-0809205, BCS-1233592, BCS-1003047) and the University of Delaware Mather Research Award (2012). Many thanks are given to the Delaware Environmental Observing System (DEOS) for meteorological data; to Ranger Rachel Temby and the Maryland Department of Natural Resources for access to the research site at Fair Hill Natural Resource Management Area. The authors extend sincere thanks to the Associate Editor and anonymous reviewers that provided comments to improve this manuscript. This material is based upon work supported by the National Institute of Food and Agriculture, U.S. Department of Agriculture, under Award Number MISZ-069390.


  1. André F, Jonard M, Ponette Q (2008a) Effects of biological and meteorological factors on stemflow chemistry within a temperate mixed oak-beech stand. Sci Total Environ 393:72–83. doi:10.1016/j.scitotenv.2007.12.002 CrossRefGoogle Scholar
  2. André F, Jonard M, Ponette Q (2008b) Spatial and temporal patterns of throughfall chemistry within a temperate mixed oak-beech stand. Sci Total Environ 397:215–228. doi:10.1016/j.scitotenv.2008.02.043 CrossRefGoogle Scholar
  3. Aneja VP, Chauhan JP, Walker JT (2000) Characterization of atmospheric ammonia emissions from swine waste storage and treatment lagoons. J Geophys Res 105:11535–11545CrossRefGoogle Scholar
  4. Arisci S, Rogora M, Marchetto A, Dichiaro F (2012) The role of forest type in the variability of DOC in atmospheric deposition at forest plots in Italy. Environ Monit Assess 184:3415–3425. doi:10.1007/s10661-011-2196-2 CrossRefGoogle Scholar
  5. Avila A, Alarcon M (1999) Relationship between precipitation chemistry and meteorological situations at a rural site in NE Spain. Atmos Environ 33:1663–1677CrossRefGoogle Scholar
  6. Beckett KP, Freer-Smith PH, Taylor G (2000) Particulate pollution capture by urban trees: effect of species and windspeed. Glob Change Biol 6:995–1003. doi:10.1046/j.1365-2486.2000.00376.x CrossRefGoogle Scholar
  7. Brown JH, Barker AC (1970) An analysis of throughfall and stemflow in mixed oak stands. Water Resour Res 6:316–323CrossRefGoogle Scholar
  8. Christ MJ, David MB, McHale PJ et al (1997) Microclimatic control of microbial C, N, and P pools in Spodosol Oa horizons. Can J For Res 1921:1914–1921CrossRefGoogle Scholar
  9. Cornell SE, Jickells TD, Cape JN et al (2003) Organic nitrogen deposition on land and coastal environments: a review of methods and data. Atmos Environ 37:2173–2191CrossRefGoogle Scholar
  10. Courchesne F, Roy AG, Biron PM et al (2001) Fluctuations of climatic conditions, elemental cycling and forest growth at the watershed scale. Environ Monit Assess 67:161–177CrossRefGoogle Scholar
  11. Deguchi A, Hattori S, Park HT (2006) The influence of seasonal changes in canopy structure on interception loss: application of the revised Gash model. J Hydrol 318:80–102. doi:10.1016/j.jhydrol.2005.06.005 CrossRefGoogle Scholar
  12. Draaijers GPJ, Erisman JW, Leeuwen NFMV et al (1997) The impact of canopy exchange on differences observed between atmospheric deposition and throughfall fluxes. Atmos Environ 31:387–397. doi:10.1016/S1352-2310(96)00164-1 CrossRefGoogle Scholar
  13. Du E, Jiang Y, Fang J, de Vries W (2014) Inorganic nitrogen deposition in China’s forests: status and characteristics. Atmos Environ 98:474–482. doi:10.1016/j.atmosenv.2014.09.005 CrossRefGoogle Scholar
  14. Elliott EM, Kendall C, Wankel SD et al (2007) Nitrogen isotopes as indicators of NOx source contributions to atmospheric nitrate deposition across the Midwestern and Northeastern United States. Environ Sci Technol 41:7661–7667. doi:10.1021/ES070898T CrossRefGoogle Scholar
  15. Felix JD, Elliott EM, Avery GB et al (2015) Isotopic composition of nitrate in sequential Hurricane Irene precipitation samples: implications for changing NOx sources. Atmos Environ. doi:10.1016/j.atmosenv.2015.01.075 Google Scholar
  16. Fernau ME, Samson PJ (1990) Use of cluster analysis to define periods of similar meteorology and precipitation chemistry in Eastern North America Part II: precipitation patterns and pollutant deposition. J Appl Meteorol 29:751–761CrossRefGoogle Scholar
  17. Greene JS, Kalkstein LS, Ye H, Smoyer K (1999) Relationships between synoptic climatology and atmospheric pollution at 4 US cities. Theor Appl Climatol 62:163–174. doi:10.1007/s007040050081 CrossRefGoogle Scholar
  18. Hayden BP (1999) Climate change and extratropical storminess in the United States: an assessment. J Am Water Resour Assoc 35:1387–1397CrossRefGoogle Scholar
  19. Hofhansl F, Wanek W, Drage S et al (2012) Controls of hydrochemical fluxes via stemflow in tropical lowland rainforests: effects of meteorology and vegetation characteristics. J Hydrol 452–453:247–258. doi:10.1016/j.jhydrol.2012.05.057 CrossRefGoogle Scholar
  20. Kalkstein LS, Corrigan P (1986) A synoptic climatological approach for geographical analysis: assessment of sulfur dioxide concentrations. Ann Assoc Am Geogr 76:381–395. doi:10.1111/j.1467-8306.1986.tb00126.x CrossRefGoogle Scholar
  21. Kaushal SS, Groffman PM, Band LE et al (2011) Tracking nonpoint source nitrogen pollution in human-impacted watersheds. Environ Sci Technol 45:8225–8232. doi:10.1021/es200779e CrossRefGoogle Scholar
  22. Lajtha K, Jones J (2013) Trends in cation, nitrogen, sulfate and hydrogen ion concentrations in precipitation in the United States and Europe from 1978 to 2010: a new look at an old problem. Biogeochemistry 116:303–334. doi:10.1007/s10533-013-9860-2 CrossRefGoogle Scholar
  23. Levia DF, Frost EE (2003) A review and evaluation of stemflow literature in the hydrologic and biogeochemical cycles of forested and agricultural ecosystems. J Hydrol 274:1–29CrossRefGoogle Scholar
  24. Levia DF, Germer S (2015) A review of stemflow generation dynamics and stemflow-environment interactions in forests and shrublands. Rev Geophys 53:673–714. doi:10.1002/2015RG000479 CrossRefGoogle Scholar
  25. Levia DF, Herwitz SR (2000) Physical properties of water in relation to stemflow leachate dynamics: implications for nutrient cycling. Can J For Res 30:662–666. doi:10.1139/cjfr-30-4-662 CrossRefGoogle Scholar
  26. Levia DF, Van Stan JT, Mage SM, Kelley-Hauske PW (2010) Temporal variability of stemflow volume in a beech-yellow poplar forest in relation to tree species and size. J Hydrol 380:112–120. doi:10.1016/j.jhydrol.2009.10.028 CrossRefGoogle Scholar
  27. Levia DF, Van Stan JT, Siegert CM et al (2011) Atmospheric deposition and corresponding variability of stemflow chemistry across temporal scales in a mid-Atlantic broadleaved deciduous forest. Atmos Environ 45:3046–3054. doi:10.1016/j.atmosenv.2011.03.022 CrossRefGoogle Scholar
  28. Levia DF, Van Stan JT, Inamdar SP et al (2012) Stemflow and dissolved organic carbon cycling: temporal variability in concentration, flux, and UV-Vis spectral metrics in a temperate broadleaved deciduous forest in the eastern United States. Can J For Res 42:207–216. doi:10.1139/X11-173 CrossRefGoogle Scholar
  29. Likens GE, Driscoll CT, Buso DC et al (2002) The biogeochemistry of sulfur at Hubbard Brook. Biogeochemistry 60:235–315CrossRefGoogle Scholar
  30. Lloyd PJ (2010) Changes in the wet precipitation of sodium and chloride over the continental United States, 1984–2006. Atmos Environ 44:3196–3206. doi:10.1016/j.atmosenv.2010.05.016 CrossRefGoogle Scholar
  31. Long RP, Horsley SB, Hallett RA, Bailey SW (2009) Sugar maple growth in relation to nutrition and stress in the northeastern United States. Ecol Appl 19:1454–1466. doi:10.1890/08-1535.1 CrossRefGoogle Scholar
  32. Lovett GM, Lindberg SE (1984) Dry deposition and canopy exchange in a mixed oak forest as determined by analysis of throughfall. J Appl Ecol 21:1013–1027CrossRefGoogle Scholar
  33. Moore ID (1983) Throughfall pH: effect of precipitation: timing and amount. J Am Water Resour Assoc 19:961–965. doi:10.1111/j.1752-1688.1983.tb05946.x CrossRefGoogle Scholar
  34. Moreno G, Gallardo JF, Bussotti F (2001) Canopy modification of atmospheric deposition in oligotrophic Quercus pyrenaica forests of an unpolluted region (central-western Spain). For Ecol Manag 149:47–60. doi:10.1016/S0378-1127(00)00544-2 CrossRefGoogle Scholar
  35. Nakanishi A, Shibata H, Inokura Y et al (2001) Chemical characteristics in stemflow of Japanese cedar in Japan. Water Air Soil Pollut 130:709–714CrossRefGoogle Scholar
  36. Neff JC, Holland EA, Dentener FJ et al (2002) The origin, composition and rates of organic nitrogen deposition: a missing piece of the nitrogen cycle? Biogeochemistry 57:99–136CrossRefGoogle Scholar
  37. Pan Y, Birdsey R, Hom J, McCullough K (2009) Separating effects of changes in atmospheric composition, climate and land-use on carbon sequestration of US. Mid-Atlantic temperate forests. For Ecol Manag 259:151–164. doi:10.1016/j.foreco.2009.09.049 CrossRefGoogle Scholar
  38. Parker GG (1983) Throughfall, stemflow in forest nutrition. Adv Ecol Res 13:58–121Google Scholar
  39. Paulot F, Jacob D (2014) Hidden cost of US agricultural exports: particulate matter from ammonia emissions. Environ Sci Technol 48:903–908. doi:10.1021/es4034793 CrossRefGoogle Scholar
  40. Pryor SC, Barthelmie RJ (2005) Liquid and chemical fluxes in precipitation, throughfall, and stemflow: observations from a deciduous forest and a red pine plantation in the midwestern USA. Water Resour Res 163:203–227Google Scholar
  41. Riddick S, Ward D, Hess P et al (2016) Estimate of changes in agricultural terrestrial nitrogen pathways and ammonia emissions from 1850 to present in the Community Earth System Model. Biogeosciences 13:3397–3426. doi:10.5194/bg-13-3397-2016 CrossRefGoogle Scholar
  42. Rosenqvist L, Kleja DB, Johansson M-B (2010) Concentrations and fluxes of dissolved organic carbon and nitrogen in a Picea abies chronosequence on former arable land in Sweden. For Ecol Manag 259:275–285. doi:10.1016/j.foreco.2009.10.013 CrossRefGoogle Scholar
  43. Shen W, Ren H, Darrel Jenerette G et al (2013) Atmospheric deposition and canopy exchange of anions and cations in two plantation forests under acid rain influence. Atmos Environ 64:242–250. doi:10.1016/j.atmosenv.2012.10.015 CrossRefGoogle Scholar
  44. Siegert CM, Leathers DJ, Levia DF (2016a) Synoptic typing: interdisciplinary application methods with three practical hydroclimatological examples. Theor Appl Climatol. doi:10.1007/s00704-015-1700-y Google Scholar
  45. Siegert CM, Levia DF, Hudson SA et al (2016b) Small-scale topographic variability influences tree species distribution and canopy throughfall partitioning in a temperate deciduous forest. For Ecol Manag 359:109–117. doi:10.1016/j.foreco.2015.09.028 CrossRefGoogle Scholar
  46. Skeffington RA, Hill TJ (2012) The effects of a changing pollution climate on throughfall deposition and cycling in a forested area in southern England. Sci Total Environ 434:28–38. doi:10.1016/j.scitotenv.2011.12.038 CrossRefGoogle Scholar
  47. Staelens J, de Schrijver A, Verheyen K, Verhoest NEC (2006) Spatial variability and temporal stability of throughfall water under a dominant beech (Fagus sylvatica L.) tree in relationship to canopy cover. J Hydrol 330:651–662. doi:10.1016/j.jhydrol.2006.04.032 CrossRefGoogle Scholar
  48. Staelens J, de Schrijver A, Verheyen K (2007) Seasonal variation in throughfall and stemflow chemistry beneath a European beech (Fagus sylvatica) tree in relation to canopy phenology. Can J For Res 37:1359–1372. doi:10.1139/X07-003 CrossRefGoogle Scholar
  49. Staelens J, de Schrijver A, Verheyen K, Verhoest NEC (2008) Rainfall partitioning into throughfall, stemflow, and interception within a single beech (Fagus sylvatica L.) canopy: influence of foliation, rain event characteristics, and meteorology. Hydrol Process 22:33–45. doi:10.1002/hyp CrossRefGoogle Scholar
  50. Subbarao GV, Ito O, Berry WL, Wheeler RM (2003) Sodium—a functional plant nutrient. CRC Crit Rev Plant Sci 22:391–416. doi:10.1080/07352680390243495 Google Scholar
  51. Svensson T, Lovett GM, Likens GE (2010) Is chloride a conservative ion in forest ecosystems? Biogeochemistry 107:125–134. doi:10.1007/s10533-010-9538-y CrossRefGoogle Scholar
  52. Ulrich B (1983) Interaction of forest canopies with atmospheric constituents: SO2, alkali and earth alkali cations and chloride. In: Ulrich B, Pankrath J (eds) Effects of accumulation of air pollutants in forest ecosystems. Springer, Netherlands, pp 33–45CrossRefGoogle Scholar
  53. van Groenigen KJ, Six J, Hungate BA et al (2006) Element interactions limit soil carbon storage. Proc Natl Acad Sci USA 103:6571–6574. doi:10.1073/pnas.0509038103 CrossRefGoogle Scholar
  54. Van Stan JT, Levia DF, Inamdar SP et al (2012) The effects of phenoseason and storm characteristics on throughfall solute washoff and leaching dynamics from a temperate deciduous forest canopy. Sci Total Environ 430:48–58. doi:10.1016/j.scitotenv.2012.04.060 CrossRefGoogle Scholar
  55. Van Stan JT, Van Stan JH, Levia DF (2014) Meteorological influences on stemflow generation across diameter size classes of two morphologically distinct deciduous species. Int J Biometeorol. doi:10.1007/s00484-014-0807-7 Google Scholar
  56. Verstraeten A, Verschelde P, De Vos B et al (2016) Increasing trends of dissolved organic nitrogen (DON) in temperate forests under recovery from acidification in Flanders, Belgium. Sci Total Environ 553:107–119. doi:10.1016/j.scitotenv.2016.02.060 CrossRefGoogle Scholar
  57. Violaki K, Zarbas P, Mihalopoulos N (2010) Long-term measurements of dissolved organic nitrogen (DON) in atmospheric deposition in the Eastern Mediterranean: fluxes, origin and biogeochemical implications. Mar Chem 120:179–186CrossRefGoogle Scholar
  58. Wear DN, Huggett R (2011) Forecasting forest type and age classes in the Appalachian-Cumberland subregion of the central hardwood region. In: Greenberg C, Collins B, Thompson FR (eds) Sustaining young forest communities: ecology and management of early successional habitat in the US central hardwood region. Springer, Netherlands, pp 289–304CrossRefGoogle Scholar
  59. Woodall CW, Zhu K, Westfall JA et al (2013) Assessing the stability of tree ranges and influence of disturbance in eastern US forests. For Ecol Manag 291:172–180. doi:10.1016/j.foreco.2012.11.047 CrossRefGoogle Scholar
  60. Wuyts K, Adriaenssens S, Staelens J et al (2015) Contributing factors in foliar uptake of dissolved inorganic nitrogen at leaf level. Sci Total Environ 505:992–1002. doi:10.1016/j.scitotenv.2014.10.042 CrossRefGoogle Scholar
  61. Yarnal B (1993) Synoptic climatology in environmental analysis: a primer. Belhaven Press, LondonGoogle Scholar
  62. Zimmermann A, Wilcke W, Elsenbeer H (2007) Spatial and temporal patterns of throughfall quantity and quality in a tropical montane forest in Ecuador. J Hydrol 343:80–96. doi:10.1016/j.jhydrol.2007.06.012 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • C. M. Siegert
    • 1
  • D. F. Levia
    • 2
    • 3
  • D. J. Leathers
    • 2
  • J. T. Van Stan
    • 4
  • M. J. Mitchell
    • 5
  1. 1.Department of Forestry, Forest and Wildlife Research CenterMississippi State UniversityMississippi StateUSA
  2. 2.Department of GeographyUniversity of DelawareNewarkUSA
  3. 3.Department of Plant and Soil SciencesUniversity of DelawareNewarkUSA
  4. 4.Department of Geology and GeographyGeorgia Southern UniversityStatesboroUSA
  5. 5.Department of Environmental and Forest Biology, College of Environmental Science and ForestryState University of New YorkSyracuseUSA

Personalised recommendations