, Volume 132, Issue 1–2, pp 87–102 | Cite as

The carbon dioxide evasion cycle of an intermittent first-order stream: contrasting water–air and soil–air exchange

  • Arún Looman
  • Damien T. Maher
  • Elise Pendall
  • Adrian Bass
  • Isaac R. Santos


Ephemeral streams and wetlands are characterized by complex cycles of submersion and emersion, which influence the greenhouse gas flux rates. In this study we quantify the spatiotemporal variability in CO2 and CH4 concentrations and fluxes of an intermittent first-order stream over three consecutive wet and dry cycles spanning 56 days, to assess how hydrologic phase transitions influence greenhouse gas evasion. Water column excess CO2 ranged from −11 to 1600 μM, and excess CH4 from 1 to 15 μM. After accounting for temporal changes in the ratio of wet versus dry streambed hydraulic radius, total CO2–C fluxes ranged from 12 to 156 mmol m−2 day−1, with an integrated daily mean of 61 ± 25 mmol m−2 day−1. Soil–air evasion rates were approximately equal to those of water–air evasion. Rainfall increased background water–air CO2–C fluxes by up to 780% due to an increase in gas transfer velocity in the otherwise still waters. CH4–C fluxes increased 19-fold over the duration of the initial, longer wet-cycle from 0.1 to 1.9 mmol m−2 day−1. Temporal shifts in water depth and site-specific ephemerality were key drivers of carbon dynamics in the upper Jamison Creek watercourse. Based on these findings, we hypothesise that the cyclic periodicity of fluxes of biogenic gases from frequently intermittent streams (wet and dry cycles ranging from days to weeks) and seasonally ephemeral watercourses (dry for months at a time) are likely to differ, and therefore these differences should be considered when integrating transient systems into regional carbon budgets and models of global change.


Ephemeral Greenhouse gas Methane Headwater stream Air–water flux 



Special thanks are given to V. Kumar and C. Barton of Western Sydney University (UWS), the Blue Mountains City Council (BMCC), C. Holloway (SCU), and W. Davis for their assistance with logistics. We acknowledge funding from the Australian Research Council (LE120100156, DE140101733 and DE150100581).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10533_2016_289_MOESM1_ESM.pdf (203 kb)
Supplementary material 1 (PDF 203 kb)


  1. Alin SR, Rasera MF, Salimon CI, Richey EJ, Holtgrieve GW, Krusche AV, Snidvongs A (2011) Physical controls on carbon dioxide transfer velocity and flux in low-gradient river systems and implications for regional carbon budgets. J Geophys Res 116:G01009CrossRefGoogle Scholar
  2. Bakker DC, Bange HW, Gruber N (2014) Air–sea interactions of natural long-lived greenhouse gases (CO2, N2O, CH4) in a changing climate. In: Liss PS, Johnson MT (eds) Ocean–atmosphere interactions of gases and particles. Springer Earth System Sciences, New YorkGoogle Scholar
  3. Bass AM, Munksgaard NC, Leblanc M, Tweed S, Bird MI (2014) Contrasting carbon export dynamics of human impacted and pristine tropical catchments in response to a short-lived discharge event. Hydrol Process 28:1835–1843CrossRefGoogle Scholar
  4. Battin TJ, Luyssaert S, Kaplan LA, Aufdenkampe AK, Richter A, Tranvik LJ (2009) The boundless carbon cycle. Nat Geosci 2:598–600CrossRefGoogle Scholar
  5. Beaulieu JJ, Shuster WD, Rebholz JA (2012) Controls on gas transfer velocities in a large river. J Geophys Res Biogeosci 117:G02007CrossRefGoogle Scholar
  6. Bernal S, Schiller D, Sabater F, Martí E (2012) Hydrological extremes modulate nutrient dynamics in Mediterranean climate streams across different spatial scales. Hydrobiologia 719:31–42CrossRefGoogle Scholar
  7. Bernot MJ, Sobota DJ, Hall RO et al (2010) Inter-regional comparison of land-use effects on stream metabolism. Freshw Biol 55:1874–1890CrossRefGoogle Scholar
  8. Birch HF (1958) The effect of soil drying on humus decomposition and nitrogen availability. Plant Soil 10:9–31CrossRefGoogle Scholar
  9. Biron PM, Roy AG, Courschesne F, Hendershot WH, Côté B, Fyles J (1999) The effects of antecedent moisture conditions on the relationship of hydrology to hydrochemistry in a small forested watershed. Hydrol Process 13:1541–1555CrossRefGoogle Scholar
  10. Bogard MJ, del Giorgio PA, Boutet L et al (2014) Oxic water column methanogenesis as a major component of aquatic CH4 fluxes. Nat Commun 5:5350CrossRefGoogle Scholar
  11. Borges AV, Darchambeau F, Teodoru CR et al (2015) Globally significant greenhouse-gas emissions from African inland waters. Nat Geosci 8:637–642CrossRefGoogle Scholar
  12. Buffam I, Galloway JN, Blum LK, McGlathery KJ (2001) A stormflow/baseflow comparison of dissolved organic matter concentrations and bioavailability in an Appalachian stream. Biogeochemistry 53:269–306CrossRefGoogle Scholar
  13. Bureau of Meteorology (BoM) (2015a) Climate data online. Australian Government Bureau of Meteorology. Accessed 26 Oct 2015
  14. Bureau of Meteorology (BoM) (2015b) Climate data online. Australian Government Bureau of Meteorology. Accessed 26 Oct 2015
  15. Butman D, Raymond PA (2011) Significant efflux of carbon dioxide from streams and rivers in the United States. Nat Geosci 4:839–842CrossRefGoogle Scholar
  16. Campeau A, Lapierre J, Vachon D, del Giorgio PA (2014) Regional contribution of CO2 and CH4 fluxes from the fluvial network in a lowland boreal landscape of Québec. Glob Biogeochem Cycle 28:1–13CrossRefGoogle Scholar
  17. Casas-Ruiz JP, Tittel J, von Schiller D (2016) Drought-induced discontinuities in the source and degradation of dissolved organic matter in a Mediterranean river. Biogeochemistry 127:125–139CrossRefGoogle Scholar
  18. Catalán N, von Schiller D, Marcé R, Koschorreck M, Gómez-Gener L, Obrador B (2014) Carbon dioxide efflux during the flooding phase of temporary ponds. Limnetica 33:349–360Google Scholar
  19. Claret C, Boulton A (2009) Integrating hydraulic conductivity with biogeochemical gradients and microbial activity along river–groundwater exchange zones in a subtropical stream. Hydrogeol J 17:151–160CrossRefGoogle Scholar
  20. Costigan KH, Daniels MD, Dodds WK (2015) Fundamental spatial and temporal disconnections in the hydrology of an intermittent prairie headwater network. J Hydrol 522:305–316CrossRefGoogle Scholar
  21. Crusius J, Wanninkhof R (2003) Gas transfer velocities measured at low wind speed over a lake. Limnol Oceanogr 48:1010–1017CrossRefGoogle Scholar
  22. Datry T, Larned ST, Tockner K (2014) Intermittent rivers: a challenge for freshwater ecology. Bioscience 64:229–235CrossRefGoogle Scholar
  23. Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173CrossRefGoogle Scholar
  24. Dieter D, von Schiller D, García-Roger EM et al (2011) Preconditioning effects of intermittent stream flow on leaf litter decomposition. Aquat Sci 73:599–609CrossRefGoogle Scholar
  25. Dinsmore KJ, Billett MF (2008) Continuous measurement and modeling of CO2 losses from a peatland stream during stormflow events. Water Resour Res 44:W12417CrossRefGoogle Scholar
  26. Dinsmore KJ, Wallin MB, Johnson MS, Billett MF, Bishop K, Pumpanen J, Ojala A (2013) Contrasting CO2 concentration discharge dynamics in headwater streams: a multi-catchment comparison. J Geophys Res Biogeosci 118:445–461CrossRefGoogle Scholar
  27. Dodds WK (2006) Eutrophication and trophic state in rivers and streams. Limnol Oceanogr 51:671–680CrossRefGoogle Scholar
  28. Dodds WK, Perkin JS, Gerken JE (2013) Human impact on freshwater ecosystem services: a global perspective. Environ Sci Technol 47:9061–9068CrossRefGoogle Scholar
  29. Fazi S, Vazquez E, Casamayor EO, Amalfitano S, Butturini A (2013) Stream hydrological fragmentation drives bacterioplankton community composition. PLoS ONE 8:e64109CrossRefGoogle Scholar
  30. Frankignoulle M (1988) Field measurements of air-sea CO2 exchange. Limnol Oceanogr 33:313–322CrossRefGoogle Scholar
  31. Frew NM, Goldman JC, Dennett MR, Johnson AS (1990) Impact of phytoplankton-generated surfactants on air-sea gas exchange. J Geophys Res 95:3337–3352CrossRefGoogle Scholar
  32. Frew NM, Bock EJ, Schimpf U et al (2004) Air–sea gas transfer: its dependence on wind stress, small-scale roughness, and surface films. J Geophys Res 109:C08S17CrossRefGoogle Scholar
  33. Fryirs KA, Cowley K, Hose GC (2016) Intrinsic and extrinsic controls on the geomorphic condition of upland swamps in Eastern NSW. Catena 137:100–112CrossRefGoogle Scholar
  34. Gallo EL, Lohse KA, Ferlin CM et al (2014) Physical and biological controls on trace gas fluxes in semi-arid urban ephemeral waterways. Biogeochemistry 121:189–207CrossRefGoogle Scholar
  35. Godsey SE, Kirchner JW (2014) Dynamic, discontinuous stream networks: hydrologically driven variations in active drainage density, flowing channels and stream order. Hydrol Process 28:5791–5803CrossRefGoogle Scholar
  36. Gómez-Gener L, Obrador B, Marcé R et al (2016) When water vanishes: magnitude and regulation of carbon dioxide emissions from dry temporary streams. Ecosystems 19:710–723CrossRefGoogle Scholar
  37. Hagen EM, McTammany ME, Webster JR, Benfield EF (2010) Shifts in allochthonous input and autochthonous production in streams along an agricultural land-use gradient. Hydrobiologia 655:61–77CrossRefGoogle Scholar
  38. Haines AT, Finlayson BL, McMahon TA (1988) A global classification of river regimes. Appl Geogr 8:255–272CrossRefGoogle Scholar
  39. Hall RO, Yackulic CB, Kennedy TA et al (2015) Turbidity, light, temperature, and hydropeaking control primary productivity in the Colorado River, Grand Canyon. Limnol Oceanogr 60:512–526CrossRefGoogle Scholar
  40. Hansen WF (2001) Identifying stream types and management implications. For Ecol Manag 143:39–46CrossRefGoogle Scholar
  41. Harrison JA, Matson PA, Fendorf SE (2005) Effects of a diel oxygen cycle on nitrogen transformations and greenhouse gas emissions in a eutrophied subtropical stream. Aquat Sci 67:308–315CrossRefGoogle Scholar
  42. Haverd V, Raupach MR, Briggs PR et al (2013) The Australian terrestrial carbon budget. Biogeosciences 10:851–869CrossRefGoogle Scholar
  43. Ho DT, Bliven LF, Wanninkhof R, Schlosser P (1997) The effect of rain on air–water gas exchange. Tellus B 49:149–158CrossRefGoogle Scholar
  44. Ho DT, Veron F, Harrison E, Bliven LF, Scott N, McGillis WR (2007) The combined effect of rain and wind on air–water gas exchange: a feasibility study. J Mar Syst 66:150–160CrossRefGoogle Scholar
  45. Holgerson MA, Raymond PA (2016) Large contribution to inland water CO2 and CH4 emissions from very small ponds. Nat Geosci 9:222–226CrossRefGoogle Scholar
  46. Holmes NT (1999) Recovery of headwater stream flora following the 1989–1992 groundwater drought. Hydrol Process 13:341–354CrossRefGoogle Scholar
  47. Hook AM, Yeakley JA (2005) Stormflow dynamics of dissolved organic carbon and total dissolved nitrogen in a small urban watershed. Biogeochemistry 75:409–431CrossRefGoogle Scholar
  48. Jähne B, Münnich K, Dutzi R, Huber W, Libner P (1987) On the parameters influencing air–water gas exchange. J Geophys Res 92:1937–1949CrossRefGoogle Scholar
  49. Janke BD, Finlay JC, Hobbie SE, Baker LA, Sterner RW, Nidzgorski D, Wilson BN (2014) Contrasting influences of stormflow and baseflow pathways on nitrogen and phosphorus export from an urban watershed. Biogeochemistry 121:209–228CrossRefGoogle Scholar
  50. Jeanneau L, Denis M, Pierson-Wickmann A, Gruau G, Lambert T, Petitjean P (2015) Sources of dissolved organic matter during storm and inter-storm conditions in a lowland headwater catchment: constraints from high-frequency molecular data. Biogeosciences 12:4333–4343CrossRefGoogle Scholar
  51. Johnson MS, Weiler M, Couto EG, Riha SJ, Lehmann J (2007) Storm pulses of dissolved CO2 in a forested headwater Amazonian stream explored using hydrograph separation. Water Resour Res 43:W11201Google Scholar
  52. Johnson MS, Lehmann J, Riha SJ, Krusche AV, Richey JE, Ometto JP, Couto EG (2008) CO2 efflux from Amazonian headwater streams represents a significant fate for deep soil respiration. Geophys Res Lett 35:L17401CrossRefGoogle Scholar
  53. Jones JB, Mulholland PJ (1998) Carbon dioxide variation in a hardwood forest stream: an integrative measure of whole catchment soil respiration. Ecosystems 1:183–196CrossRefGoogle Scholar
  54. Knorr KH, Lischeid G, Blodau C (2009) Dynamics of redox processes in a minerotrophic fen exposed to a water table manipulation. Geoderma 153:379–392CrossRefGoogle Scholar
  55. Koprivnjak JF, Dillon PJ, Molot LA (2010) Importance of CO2 evasion from small boreal streams. Glob Biogeochem Cycle 24:GB4003CrossRefGoogle Scholar
  56. Kremer J, Nixon S, Buckley B, Roques P (2003) Technical note: conditions for using the floating chamber method to estimate air–water gas ex- change. Estuar Coast 26:985–990CrossRefGoogle Scholar
  57. Larned ST, Datry T, Arscott DB, Tockner K (2010) Emerging concepts in temporary-river ecology. Freshw Biol 55:717–738CrossRefGoogle Scholar
  58. Leopold LB, Maddock T (1953) The hydraulic geometry of stream channels and some physiographic implications. United States Geological Survey, Reston, pp 1–57Google Scholar
  59. Looman A, Santos IR, Tait DR, Webb JR, Sullivan CA, Maher DT (2016) Carbon cycling and exports over diel and flood-recovery timescales in a subtropical rainforest headwater stream. Sci Total Environ 550:645–657CrossRefGoogle Scholar
  60. Lorke A, Bodmer P, Noss C et al (2015) Technical note: drifting versus anchored flux chambers for measuring greenhouse gas emissions from running waters. Biogeosciences 12:7013–7024CrossRefGoogle Scholar
  61. Marshall JS, Palmer WM (1948) The distribution of raindrops with size. J Meteorol 5:165–166CrossRefGoogle Scholar
  62. McClain ME, Boyer EW, Dent CL et al (2003) Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6:301–312CrossRefGoogle Scholar
  63. McKenna SP, McGillis WR (2004) The role of free-surface turbulence and surfactants in air–water gas transfer. Int J Heat Mass Transf 47:539–553CrossRefGoogle Scholar
  64. McMahon TA, Finlayson BL (2003) Droughts and anti-droughts: the low flow hydrology of Australian rivers. Freshw Biol 48:1147–1160CrossRefGoogle Scholar
  65. Millero FJ (2007) The marine inorganic carbon cycle. Chem Rev 107:308–341CrossRefGoogle Scholar
  66. Mohanty SK, Saiers JE, Ryan JN (2015) Colloid mobilization in a fractured soil during dry-wet cycles: role of drying duration and flow path permeability. Environ Sci Technol 49:9100–9106CrossRefGoogle Scholar
  67. Nadeau TL, Rains MC (2007) Hydrological connectivity between headwater streams and downstream waters: how science can inform policy. J Am Water Resour Assoc 43:118–133CrossRefGoogle Scholar
  68. Neubauer SC, Megonigal JP (2015) Moving beyond global warming potentials to quantify the climatic role of ecosystems. Ecosystems 18:1000–1013CrossRefGoogle Scholar
  69. Palta MM, Ehrenfeld JG, Groffman PM (2014) “Hotspots” and “hot moments” of denitrification in urban brownfield wetlands. Ecosystems 17:1121–1137CrossRefGoogle Scholar
  70. Peter H, Singer GA, Preiler C, Chifflard P, Steniczka G, Battin TJ (2014) Scales and drivers of temporal pCO2 dynamics in an Alpine stream. J Geophys Res Biogeosci 119:1078–1091CrossRefGoogle Scholar
  71. Poulter B, Frank D, Ciais P et al (2014) Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509:600–603CrossRefGoogle Scholar
  72. Prairie YT, del Giorgio PA (2013) A new pathway of freshwater methane emissions and the putative importance of microbubbles. Inland Waters 3:311–320CrossRefGoogle Scholar
  73. Raymond PA, Saiers JE (2010) Event controlled DOC export from forested watersheds. Biogeochemistry 100:197–209CrossRefGoogle Scholar
  74. Raymond PA, Zappa CJ, Butman D et al (2012) Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers. Limnol Oceanogr Fluids Environ 2:41–53CrossRefGoogle Scholar
  75. Raymond PA, Hartmann J, Lauerwald R et al (2013) Global carbon dioxide emissions from inland waters. Nature 503:355–359CrossRefGoogle Scholar
  76. Raymond PA, Saiers JE, Sobczac WV (2016) Hydrological and biogeochemical controls on watershed dissolved organic matter transport: pulse-shunt concept. Ecology 97(1):5–16Google Scholar
  77. Regnier P, Friedlingstein P, Ciais P et al (2013) Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat Geosci 6:597–607CrossRefGoogle Scholar
  78. Richey JE, Devol AH, Wofsy SC, Victoria R, Riberio MN (1988) Biogenic gases and the oxidation and reduction of carbon in Amazon River and floodplain waters. Limnol Oceanogr 33:551–561CrossRefGoogle Scholar
  79. Rudorff CM, Melack JM, MacIntyre S, Barbosa CC, Novo EM (2011) Seasonal and spatial variability of CO2 emission from a large floodplain lake in the lower Amazon. J Geophys Res 116:G04007CrossRefGoogle Scholar
  80. Ruiz-Halpern S, Maher DT, Santos IR, Eyre BD (2015) High CO2 evasion during floods in an Australian subtropical estuary downstream from a modified acidic floodplain wetland. Limnol Oceanogr 60:42–56CrossRefGoogle Scholar
  81. Sabater S, Timoner X, Borrego C, Acuña V (2016) Stream biofilm responses to flow intermittency: from cells to ecosystems. Front Environ Sci 4:14. doi: 10.3389/fenvs.2016.00014 CrossRefGoogle Scholar
  82. Sadat-Noori M, Maher DT, Santos IR (2015) Groundwater discharge as a source of dissolved carbon and greenhouse gases in a subtropical estuary. Estuar Coast 39:639–656CrossRefGoogle Scholar
  83. Salemi LF, Groppo JD, Trevisan R, de Moraes JM, de Paula LW, Martinelli LA (2012) Riparian vegetation and water yield: a synthesis. J Hydrol 454–455:195–202CrossRefGoogle Scholar
  84. Shaw JR, Cooper DJ (2008) Linkages among watersheds, stream reaches, and riparian vegetation in dryland ephemeral stream networks. J Hydrol 350:68–82CrossRefGoogle Scholar
  85. Sheldon F, Bunn SE, Hughes JM, Arthington AH, Balcombe SR, Fellows CS (2010) Ecological roles and threats to aquatic refugia in arid landscapes: dryland river waterholes. Mar Freshw Res 61:885–895CrossRefGoogle Scholar
  86. Sjögersten S, Black CR, Evers S, Hoyos-Santillan J, Wright EL, Turner BL (2014) Tropical wetlands: a missing link in the global carbon cycle? Glob Biogeochem Cycle 28:1371–1386CrossRefGoogle Scholar
  87. Snelder TH, Datry T, Lamouroux N, Larned ST, Sauquet E, Pella H, Catalogne C (2013) Regionalization of patterns of flow intermittence from gauging station records. Hydrol Earth Syst Sci 17:2685–2699CrossRefGoogle Scholar
  88. Sonnentag O, van der Kamp G, Barr AG, Chen JM (2010) On the relationship between water table depth and water vapor and carbon dioxide fluxes in a minerotrophic fen. Glob Change Biol 16:1762–1776CrossRefGoogle Scholar
  89. Stanford JA, Ward JV (2001) Revisiting the serial discontinuity concept. Regul River 17:4–5CrossRefGoogle Scholar
  90. Steward AL, von Schiller D, Tockner K et al (2012) When the river runs dry: human and ecological values of dry riverbeds. Front Ecol Environ 10:202–209CrossRefGoogle Scholar
  91. Strahler AN (1957) Quantitative analysis of watershed geomorphology. Civ Eng 101:1258–1262Google Scholar
  92. Tamooh F, Borges AV, Meysman FJ, Van Den Meersche K, Dehairs F, Merckx R, Bouillon S (2013) Dynamics of dissolved inorganic carbon and aquatic metabolism in the Tana River Basin, Kenya. Biogeosciences 10:6911–6928CrossRefGoogle Scholar
  93. Teodoru CR, Nyoni FC, Borges VA, Darchambeau F, Nyambe I, Bouillon S (2015) Dynamics of greenhouse gases (CO2, CH4, N2O) along the Zambezi River and major tributaries, and their importance in the riverine carbon budget. Biogeosciences 12:2431–2453CrossRefGoogle Scholar
  94. Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6:579–591CrossRefGoogle Scholar
  95. Threatened Species Scientific Committee (TSSC) (2005) Commonwealth listing advice on temperate highland peat swamps on sandstone. Australian Government Department of Environment. Accessed on 2 Dec 2015
  96. Timoner X, Acuña V, von Schiller D, Sabater S (2012) Functional responses of stream biofilms to flow cessation, desiccation and rewetting. Freshw Biol 57:1565–1578CrossRefGoogle Scholar
  97. Tweed S, Leblanc M, Bass AM, Harrington GA, Munksgaard NC, Bird MI (2016) Leaky savannas: the significance of lateral carbon fluxes in the seasonal tropics. Hydrol Process 30:873–887CrossRefGoogle Scholar
  98. Vachon D, Prairie YT (2013) The ecosystem size and shape dependence of gas transfer velocity versus wind speed relationships in lakes. Can J Fish Aquat Sci 70:1757–1764CrossRefGoogle Scholar
  99. von Schiller D, Marcé R, Obrador B, Gómez-Gener L, Casas-Ruiz JP, Acuña V, Koschorreck M (2014) Carbon dioxide emissions from dry watercourses. Inland Waters 4:377–382CrossRefGoogle Scholar
  100. von Schiller D, Graeber D, Ribot M, Timoner X, Acunã V, Martí E, Sabater S, Tockner K (2015) Hydrological transitions drive dissolved organic matter quantity and composition in a temporary Mediterranean stream. Biogeochemistry 123:429–446CrossRefGoogle Scholar
  101. Wanninkhof R (2014) Relationship between wind speed and gas exchange over the ocean revisited. Limnol Oceanogr Methods 12:351–362CrossRefGoogle Scholar
  102. Weiss RF (1974) Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar Chem 2(3):203–215CrossRefGoogle Scholar
  103. Weyhenmeyer GA, Kortelainen P, Sobek S, Müller R, Rantakari M (2012) Carbon dioxide in boreal surface waters: a comparison of lakes and streams. Ecosystems 15:1295–1307CrossRefGoogle Scholar
  104. Weyhenmeyer GA, Kosten S, Wallin MB, Tranvik LJ, Jeppesen E, Roland F (2015) Significant fraction of CO2 emissions from boreal lakes derived from hydrologic inorganic carbon inputs. Nat Geosci 8:933–936CrossRefGoogle Scholar
  105. Xia J, Wu B, Wang G, Wang Y (2010) Estimation of bankfull discharge in the Lower Yellow River using different approaches. Geomorphology 117:66–77CrossRefGoogle Scholar
  106. Yamamoto S, Alcauskas JB, Crozier TE (1976) Solubility of methane in distilled water and seawater. J Chem Eng Data 21:78–80CrossRefGoogle Scholar
  107. Yvon-Durocher G, Allen AP, Bastviken D et al (2014) Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature 507:488–491CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Arún Looman
    • 1
    • 2
  • Damien T. Maher
    • 1
    • 2
  • Elise Pendall
    • 3
  • Adrian Bass
    • 3
    • 4
  • Isaac R. Santos
    • 1
    • 2
  1. 1.National Marine Science CentreSouthern Cross UniversityCoffs HarbourAustralia
  2. 2.School of Environment, Science, and EngineeringSouthern Cross UniversityLismoreAustralia
  3. 3.Hawkesbury Institute for the EnvironmentWestern Sydney UniversityRichmondAustralia
  4. 4.Department of Geographical and Earth SciencesUniversity of GlasgowGlasgowUK

Personalised recommendations