, Volume 131, Issue 3, pp 339–353 | Cite as

Mechanisms behind plant diversity effects on inorganic and organic N leaching from temperate grassland

  • Sophia Leimer
  • Yvonne Oelmann
  • Nico Eisenhauer
  • Alexandru Milcu
  • Christiane Roscher
  • Stefan Scheu
  • Alexandra Weigelt
  • Christian Wirth
  • Wolfgang Wilcke


Higher plant diversity reduces nitrate leaching by complementary resource use, while its relation to leaching of other N species is unclear. We determined the effects of plant species richness, functional group richness, and the presence of specific functional groups on ammonium, dissolved organic N (DON), and total dissolved N (TDN) leaching from grassland in the first 4 years after conversion from fertilized arable land to unfertilized grassland. On 62 experimental plots in Jena, Germany, with 1–60 plant species and 1–4 functional groups (legumes, grasses, tall herbs, small herbs), nitrate, ammonium, and TDN concentrations in soil solution (0–0.3 m soil layer) were measured fortnightly during 4 years. DON concentrations were calculated by subtracting inorganic N from TDN. Nitrogen concentrations were multiplied with modeled downward water fluxes to obtain N leaching. DON leaching contributed most to TDN leaching (64 ± SD 4% of TDN). Ammonium leaching was unaffected by plant diversity. Increasing species richness decreased DON leaching in the fourth year. We attribute this finding to enhanced use of DON as a C and N source and enhanced mineralization of DON by soil microorganisms. An increase of species richness decreased TDN leaching likely driven by the complementary use of nitrate by diverse mixtures. Legumes increased DON and TDN leaching likely because of their N\(_{2}\)-fixing ability and higher litter production. Grasses decreased TDN leaching because of more exhaustive use of nitrate and water. Our results demonstrate that increasing plant species richness decreases leaching of DON and TDN.


The Jena Experiment Biodiversity DON leaching Ammonium leaching TDN leaching Land-use change 



We thank the many people who helped with the management of the experiment and in particular the initiators, E.-D. Schulze, B. Schmid, and W. W. Weisser, and the scientific coordinator A. Ebeling. We are grateful to V. M. Temperton for her comments on the manuscript. Thanks to all the helpers who assisted during the weeding campaigns. We thank the two reviewers for their helpful comments. The Jena Experiment is funded by the Deutsche Forschungsgemeinschaft (DFG, FOR 456 & 1451, Wi 1601/4) and the Swiss National Science Foundation (SNSF, 200021E-131195/1), with additional support from the Friedrich Schiller University Jena and the Max Planck Society.


  1. Anderson JPE, Domsch KH (1978) A physiological method for the quantitative measurement of microbial biomass in soil. Soil Biol Biochem 10:215–221CrossRefGoogle Scholar
  2. Bardgett RD, Streeter TC, Bol R (2003) Soil microbes compete effectively with plants for organic-nitrogen inputs to temperate grasslands. Ecology 84:1277–1287. doi: 10.1890/0012-9658(2003)084[1277:SMCEWP]2.0.CO;2 CrossRefGoogle Scholar
  3. Başaran M, Erpul G, Tercan AE, Çanga MR (2008) The effects of land use changes on some soil properties in İndaği Mountain Pass - Çankırı, Turkey. Environ Monit Assess 136:101–119. doi: 10.1007/s10661-007-9668-4 CrossRefGoogle Scholar
  4. Bessler H, Oelmann Y, Roscher C, Buchmann N, Scherer-Lorenzen M, Schulze ED, Temperton VM, Wilcke W, Engels C (2012) Nitrogen uptake by grassland communities: contribution of N\(_{2}\) fixation, facilitation, complementarity, and species dominance. Plant Soil 358:301–322. doi: 10.1007/s11104-012-1181-z CrossRefGoogle Scholar
  5. Bessler H, Temperton VM, Roscher C, Buchmann N, Schmid B, Schulze ED, Weisser WW, Engels C (2009) Aboveground overyielding in grassland mixtures is associated with reduced biomass partitioning to belowground organs. Ecology 90:1520–1530. doi: 10.1890/08-0867.1 CrossRefGoogle Scholar
  6. Bingham MA, Biondini M (2011) Nitrate leaching as a function of plant community richness and composition, and the scaling of soil nutrients, in a restored temperate grassland. Plant Ecol 212:413–422. doi: 10.1007/s11258-010-9832-8 CrossRefGoogle Scholar
  7. Christian DG, Riche AB (1998) Nitrate leaching losses under Miscanthus grass planted on a silty clay loam soil. Soil Use Manage 14:131–135CrossRefGoogle Scholar
  8. Dijkstra FA, West JB, Hobbie SE, Reich PB, Trost J (2007) Plant diversity, CO\(_{2}\), and N influence inorganic and organic N leaching in grasslands. Ecology 88:490–500. doi: 10.1890/06-0733 CrossRefGoogle Scholar
  9. DVWK (ed) (1996) Ermittlung der Verdunstung von Land- und Wasserflächen. DVWK-Merkblätter zur Wasserwirtschaft 238. Deutscher Verband für Wasserwirtschaft und Kulturbau e. V. (DVWK), Bonn, GermanyGoogle Scholar
  10. Eisenhauer N, Bessler H, Engels C, Gleixner G, Habekost M, Milcu A, Partsch S, Sabais ACW, Scherber C, Steinbeiss S, Weigelt A, Weisser WW, Scheu S (2010) Plant diversity effects on soil microorganisms support the singular hypothesis. Ecology 91:485–496. doi: 10.1890/08-2338.1 CrossRefGoogle Scholar
  11. Eisenhauer N, Milcu A, Sabais ACW, Bessler H, Brenner J, Engels C, Klarner B, Maraun M, Partsch S, Roscher C, Schonert F, Temperton VM, Thomisch K, Weigelt A, Weisser WW, Scheu S (2011) Plant diversity surpasses plant functional groups and plant productivity as driver of soil biota in the long term. Plos One 6:e16055. doi: 10.1371/journal.pone.0016055 CrossRefGoogle Scholar
  12. Eisenhauer N, Reich PB, Scheu S (2012) Increasing plant diversity effects on productivity with time due to delayed soil biota effects on plants. Basic Appl Ecol 13:571–578. doi: 10.1016/j.baae.2012.09.002 CrossRefGoogle Scholar
  13. Eisenhauer N, Dobies T, Cesarz S, Hobbie SE, Meyer RJ, Worm K, Reich PB (2013) Plant diversity effects on soil food webs are stronger than those of elevated CO\(_{2}\) and N deposition in a long-term grassland experiment. Proc Natl Acad Sci USA 110:6889–6894. doi: 10.1073/pnas.1217382110 CrossRefGoogle Scholar
  14. Ellenberg H (1996) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht, 5th edn. Ulmer, StuttgartGoogle Scholar
  15. Grace JB (2006) Structural Equation Modeling and Natural Systems. Cambridge University Press, Cambridge, UKCrossRefGoogle Scholar
  16. Hawkesford M, Horst W, Kichey T, Lambers H, Schjoerring J, Skrumsager Møller I, White P (2012) Chapter 6—functions of macronutrients. In: Marschner P (ed) Marschner’s nutrition of higher plants, 3rd edn. Academic Press, London, pp 135–189. doi:  10.1016/B978-0-12-384905-2.00006-6
  17. Hector A, Schmid B, Beierkuhnlein C, Caldeira MC, Diemer M, Dimitrakopoulos PG, Finn JA, Freitas H, Giller PS, Good J, Harris R, Högberg P, Huss-Danell K, Joshi J, Jumpponen A, Körner C, Leadley PW, Loreau M, Minns A, Mulder CPH, O’Donovan G, Otway SJ, Pereira JS, Prinz A, Read DJ, Scherer-Lorenzen M, Schulze ED, Siamantziouras ASD, Spehn EM, Terry AC, Troumbis AY, Woodward FI, Yachi S, Lawton JH (1999) Plant diversity and productivity experiments in European grasslands. Science 286:1123–1127. doi: 10.1126/science.286.5442.1123 CrossRefGoogle Scholar
  18. Hoffmann K, Bivour W, Früh B, Koßmann M, Voß PH (2014) Klimauntersuchungen in Jena für die Anpassung an den Klimawandel und seine erwarteten Folgen. Berichte des Deutschen Wetterdienstes 243. Deutscher Wetterdienst, Offenbach am Main, GermanyGoogle Scholar
  19. Hooper DU, Vitousek PM (1998) Effects of plant composition and diversity on nutrient cycling. Ecol Monogr 68:121–149. doi: 10.2307/2657146 CrossRefGoogle Scholar
  20. Jiang XL, Zhang WG, Wang G (2007) Effects of different components of diversity on productivity in artificial plant communities. Ecol Res 22:629–634. doi: 10.1007/s11284-006-0307-2 CrossRefGoogle Scholar
  21. Jones DL, Shannon D, Murphy DV, Farrar J (2004) Role of dissolved organic nitrogen (DON) in soil N cycling in grassland soils. Soil Biol Biochem 36:749–756. doi: 10.1016/j.soilbio.2004.01.003 CrossRefGoogle Scholar
  22. Leimer S, Kreutziger Y, Rosenkranz S, Beßler H, Engels C, Hildebrandt A, Oelmann Y, Weisser WW, Wirth C, Wilcke W (2014a) Plant diversity effects on the water balance of an experimental grassland. Ecohydrology 7:1378–1391. doi: 10.1002/eco.1464 Google Scholar
  23. Leimer S, Wirth C, Oelmann Y, Wilcke W (2014b) Biodiversity effects on nitrate concentrations in soil solution: a Bayesian model. Biogeochemistry 118:141–157. doi: 10.1007/s10533-013-9913-6 CrossRefGoogle Scholar
  24. Leimer S, Oelmann Y, Wirth C, Wilcke W (2015) Time matters for plant diversity effects on nitrate leaching from temperate grassland. Agr Ecosyst Environ 211:155–163. doi: 10.1016/j.agee.2015.06.002 CrossRefGoogle Scholar
  25. Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Tilman D, Wardle DA (2001) Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science 294:804–808. doi: 10.1126/science.1064088 CrossRefGoogle Scholar
  26. Marquard E, Weigelt A, Temperton VM, Roscher C, Schumacher J, Buchmann N, Fischer M, Weisser WW, Schmid B (2009) Plant species richness and functional composition drive overyielding in a six-year grassland experiment. Ecology 90:3290–3302. doi: 10.1890/09-0069.1 CrossRefGoogle Scholar
  27. McKane RB, Johnson LC, Shaver GR, Nadelhoffer KJ, Rastetter EB, Fry B, Giblin AE, Kielland K, Kwiatkowski BL, Laundre JA, Murray G (2002) Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra. Nature 415:68–71. doi: 10.1038/415068a CrossRefGoogle Scholar
  28. Mokany K, Ash J, Roxburgh S (2008) Functional identity is more important than diversity in influencing ecosystem processes in a temperate native grassland. J Ecol 96:884–893. doi: 10.1111/j.1365-2745.2008.01395.x CrossRefGoogle Scholar
  29. Neff JC, Chapin FS III, Vitousek PM (2003) Breaks in the cycle: dissolved organic nitrogen in terrestrial ecosystems. Front Ecol Environ 1:205–211. doi: 10.1890/1540-9295(2003) 001[0205:BITCDO]2.0.CO;2 CrossRefGoogle Scholar
  30. Niklaus PA, Kandeler E, Leadley PW, Schmid B, Tscherko D, Körner C (2001) A link between plant diversity, elevated CO\(_{2}\) and soil nitrate. Oecologia 127:540–548. doi: 10.1007/s004420000612 CrossRefGoogle Scholar
  31. Nippert JB, Knapp AK (2007) Soil water partitioning contributes to species coexistence in tallgrass prairie. Oikos 116:1017–1029. doi: 10.1111/j.2007.0030-1299.15630.x CrossRefGoogle Scholar
  32. Oelmann Y, Kreutziger Y, Temperton VM, Buchmann N, Roscher C, Schumacher J, Schulze ED, Weisser WW, Wilcke W (2007a) Nitrogen and phosphorus budgets in experimental grasslands of variable diversity. J Environ Qual 36:396–407. doi: 10.2134/jeq2006.0217 CrossRefGoogle Scholar
  33. Oelmann Y, Wilcke W, Temperton VM, Buchmann N, Roscher C, Schumacher J, Schulze ED, Weisser WW (2007b) Soil and plant nitrogen pools as related to plant diversity in an experimental grassland. Soil Sci Soc Am J 71:720–729. doi: 10.2136/sssaj2006.0205 CrossRefGoogle Scholar
  34. Oelmann Y, Buchmann N, Gleixner G, Habekost M, Roscher C, Rosenkranz S, Schulze ED, Steinbeiss S, Temperton VM, Weigelt A, Weisser WW, Wilcke W (2011) Plant diversity effects on aboveground and belowground N pools in temperate grassland ecosystems: Development in the first 5 years after establishment. Global Biogeochem Cy 25:GB2014. doi:  10.1029/2010GB003869
  35. Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2014) nlme: Linear and Nonlinear Mixed Effects Models. URL, R package version 3.1-117
  36. R Core Team (2014) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, URL Scholar
  37. Ravenek JM, Bessler H, Engels C, Scherer-Lorenzen M, Gessler A, Gockele A, De Luca E, Temperton VM, Ebeling A, Roscher C, Schmid B, Weisser WW, Wirth C, de Kroon H, Weigelt A, Mommer L (2014) Long-term study of root biomass in a biodiversity experiment reveals shifts in diversity effects over time. Oikos 123:1528–1536. doi: 10.1111/oik.01502 CrossRefGoogle Scholar
  38. Roscher C, Schumacher J, Baade J, Wilcke W, Gleixner G, Weisser WW (2004) The role of biodiversity for element cycling and trophic interactions: an experimental approach in a grassland community. Basic Appl Ecol 5:107–121. doi: 10.1078/1439-1791-00216 CrossRefGoogle Scholar
  39. Roscher C, Thein S, Schmid B, Scherer-Lorenzen M (2008) Complementary nitrogen use among potentially dominant species in a biodiversity experiment varies between two years. J Ecol 96:477–488. doi: 10.1111/j.1365-2745.2008.01353.x CrossRefGoogle Scholar
  40. Rosenkranz S, Wilcke W, Eisenhauer N, Oelmann Y (2012) Net ammonification as influenced by plant diversity in experimental grassland. Soil Biol Biochem 48:78–87. doi: 10.1016/j.soilbio.2012.01.008 CrossRefGoogle Scholar
  41. Scherer-Lorenzen M, Palmborg C, Prinz A, Schulze ED (2003) The role of plant diversity and composition for nitrate leaching in grasslands. Ecology 84:1539–1552. doi: 10.1890/0012-9658(2003)084[1539:TROPDA]2.0.CO;2 CrossRefGoogle Scholar
  42. Scheu S (1992) Automated measurement of the respiratory response of soil microcompartments: Active microbial biomass in earthworm faeces. Soil Biol Biochem 24:1113–1118CrossRefGoogle Scholar
  43. Schilling KE, Spooner J (2006) Effects of watershed-scale land use change on stream nitrate concentrations. J Environ Qual 35:2132–2145. doi: 10.2134/jeq2006.0157 CrossRefGoogle Scholar
  44. Seitzinger SP, Sanders RW (1997) Contribution of dissolved organic nitrogen from rivers to estuarine eutrophication. Mar Ecol Prog Ser 159:1–12. doi: 10.3354/meps159001 CrossRefGoogle Scholar
  45. Spehn EM, Joshi J, Schmid B, Diemer M, Körner C (2000) Above-ground resource use increases with plant species richness in experimental grassland ecosystems. Funct Ecol 14:326–337CrossRefGoogle Scholar
  46. Spehn EM, Hector A, Joshi J, Scherer-Lorenzen M, Schmid B, Bazeley-White E, Beierkuhnlein C, Caldeira MC, Diemer M, Dimitrakopoulos PG, Finn JA, Freitas H, Giller PS, Good J, Harris R, Högberg P, Huss-Danell K, Jumpponen A, Koricheva J, Leadley PW, Loreau M, Minns A, Mulder CPH, O’Donovan G, Otway SJ, Palmborg C, Pereira JS, Pfisterer AB, Prinz A, Read DJ, Schulze ED, Siamantziouras ASD, Terry AC, Troumbis AY, Woodward FI, Yachi S, Lawton JH (2005) Ecosystem effects of biodiversity manipulations in European grasslands. Ecol Monogr 75:37–63. doi: 10.1890/03-4101 CrossRefGoogle Scholar
  47. Steinbeiss S, Beßler H, Engels C, Temperton VM, Buchmann N, Roscher C, Kreutziger Y, Baade J, Habekost M, Gleixner G (2008) Plant diversity positively affects short-term soil carbon storage in experimental grasslands. Glob Change Biol 14:2937–2949. doi: 10.1111/j.1365-2486.2008.01697.x CrossRefGoogle Scholar
  48. Stevenson FJ, Cole MA (1999) Cycles of soil: carbon, nitrogen, phosphorus, sulfur, micronutrients, 2nd edn. Wiley, New YorkGoogle Scholar
  49. Strecker T, González Macé O, Scheu S, Eisenhauer N (2016) Functional composition of plant communities determines the spatial and temporal stability of soil microbial properties in a long-term plant diversity experiment. Oikos. doi: 10.1111/oik.03181 Google Scholar
  50. Streeter TC, Bol R, Bardgett RD (2000) Amino acids as a nitrogen source in temperate upland grasslands: the use of dual labelled (\(^{13}\)C, \(^{15}\)N) glycine to test for direct uptake by dominant grasses. Rapid Commun Mass Spectrom 14:1351–1355. doi: 10.1002/1097-0231(20000815)14:15<1351::AID-RCM23>3.0.CO;2-9 CrossRefGoogle Scholar
  51. Temperton VM, Mwangi PN, Scherer-Lorenzen M, Schmid B, Buchmann N (2007) Positive interactions between nitrogen-fixing legumes and four different neighbouring species in a biodiversity experiment. Oecologia 151:190–205. doi: 10.1007/s00442-006-0576-z CrossRefGoogle Scholar
  52. Tilman D, Wedin D, Knops J (1996) Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379:718–720. doi: 10.1038/379718a0 CrossRefGoogle Scholar
  53. Tilman D, Reich PB, Knops J, Wedin D, Mielke T, Lehman C (2001) Diversity and productivity in a long-term grassland experiment. Science 294:843–845. doi: 10.1126/science.1060391 CrossRefGoogle Scholar
  54. van Kessel C, Clough T, van Groenigen JW (2009) Dissolved organic nitrogen: an overlooked pathway of nitrogen loss from agricultural systems? J Environ Qual 38:393–401. doi: 10.2134/jeq2008.0277 CrossRefGoogle Scholar
  55. Verheyen K, Bulteel H, Palmborg C, Olivié B, Nijs I, Raes D, Muys B (2008) Can complementarity in water use help to explain diversity-productivity relationships in experimental grassland plots? Oecologia 156:351–361. doi: 10.1007/s00442-008-0998-x CrossRefGoogle Scholar
  56. Weigelt A, Bol R, Bardgett RD (2005) Preferential uptake of soil nitrogen forms by grassland plant species. Oecologia 142:627–635. doi: 10.1007/s00442-004-1765-2 CrossRefGoogle Scholar
  57. Weihermüller L, Siemens J, Deurer M, Knoblauch S, Rupp H, Göttlein A, Pütz T (2007) In situ soil water extraction: A review. J Environ Qual 36:1735–1748. doi: 10.2134/jeq2007.0218 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Sophia Leimer
    • 1
  • Yvonne Oelmann
    • 2
  • Nico Eisenhauer
    • 3
    • 4
  • Alexandru Milcu
    • 5
  • Christiane Roscher
    • 3
    • 6
  • Stefan Scheu
    • 7
  • Alexandra Weigelt
    • 3
    • 8
  • Christian Wirth
    • 3
    • 8
  • Wolfgang Wilcke
    • 1
  1. 1.Institute of Geography and GeoecologyKarlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.GeoecologyUniversity of TübingenTübingenGermany
  3. 3.German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-LeipzigLeipzigGermany
  4. 4.Institute of BiologyUniversity of LeipzigLeipzigGermany
  5. 5.CNRS, Ecotron - UPS 3248Montferrier-sur-LezFrance
  6. 6.Physiological DiversityUFZ, Helmholtz Centre for Environmental ResearchLeipzigGermany
  7. 7.JFB Institute of Zoology and AnthropologyGeorg August University GöttingenGöttingenGermany
  8. 8.Institute of Biology, Special Botany and Functional Biodiversity ResearchUniversity of LeipzigLeipzigGermany

Personalised recommendations