Advertisement

Biogeochemistry

, Volume 131, Issue 3, pp 303–319 | Cite as

Ecosystem metabolism and greenhouse gas production in a mesotrophic northern temperate lake experiencing seasonal hypoxia

  • Kateri R. Salk
  • Peggy H. Ostrom
  • Bopaiah A. Biddanda
  • Anthony D. Weinke
  • Scott T. Kendall
  • Nathaniel E. OstromEmail author
Article

Abstract

Many lacustrine systems, despite management efforts to control eutrophication, are hypoxic during stratified periods. Hypoxia is a major concern, not only for its impact on aquatic life but also for its potential to stimulate production of the greenhouse gases, methane (CH4) and nitrous oxide (N2O). We investigated the drivers of hypoxia in Muskegon Lake, a temperate dimictic freshwater estuary that experiences frequent hypolimnetic mixing due to atmospheric forces, riverine inputs, and intrusion of oxic water from coastal upwelling in Lake Michigan. Primary production and respiration (R) rates obtained from a δ18O mass balance model were similar to other mesotrophic environments (0.56–26.31 and 0.57–13.15 mmol O2 m−3 day−1, respectively), although high P/R (≥2 in mid-summer) indicated there is sufficient autochthonous production to support hypoxia development and persistence. The isotopic enrichment factor for respiration (εobs) varied markedly and was least negative in August of both sampling years, consistent with high R rates. Hypoxic conditions were associated with accumulation of N2O but not CH4, and emissions of N2O are among the highest reported from lakes. The average N2O site preference value of 25.4‰ indicates that the majority of N2O was produced by nitrification via hydroxylamine oxidation, despite the presence of resilient hypoxia. While it has been hypothesized that denitrification acts as a sink for N2O in hypoxic lakes, it is clear that Muskegon Lake functions as a strong source of N2O via nitrification. Further considerations of lakes as global sources of N2O thus warrant a closer evaluation of nitrification-fueled N2O production.

Keywords

Hypoxia Nitrous oxide Site preference Methane Nitrification Ecosystem metabolism 

Notes

Acknowledgements

Many thanks to Hasand Gandhi, Leon Gereaux, Adam McMillan, and Alex Dutcher for their assistance in the field and lab. This manuscript has benefitted greatly through feedback from Al Steinman and Steve Hamilton. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE1424871 to KRS, the Environmental Protection Agency Great Lakes Restoration Initiative Muskegon Lake Observatory under Grant No. GL00E00460-1 to BAB, and a Michigan State University Water Research Initiation Grant to PHO, NEO, and BAB. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Environmental Protection Agency or the National Science Foundation.

Supplementary material

10533_2016_280_MOESM1_ESM.docx (385 kb)
Supplementary material 1 (DOCX 386 kb)

References

  1. Andersson KK, Hooper AB (1983) O2 and H2O are each the source of one O in NO2 produced from NH3 by Nitrosomonas: 15NMR evidence. FEBS Lett 164(2):236–240. doi: 10.1016/0014-5793(83)80292-0 CrossRefGoogle Scholar
  2. APHA (2005) Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DCGoogle Scholar
  3. Audet J, Hoffmann CC, Andersen PM, Baattrup-Pedersen A, Johansen JR, Larsen SE, Kjaergaard Elsgaard L (2014) Nitrous oxide fluxes in undisturbed riparian wetlands located in agricultural catchments: emission, uptake, and controlling factors. Soil Biol Biochem 68:291–299. doi: 10.1016/j.soilbio.2013.10.011 CrossRefGoogle Scholar
  4. Bange H, Freing A, Kock A, Löscher C (2010) Marine pathways to nitrous oxide. In: Smith K (ed) Nitrous oxide and climate change. Earthscan, London, pp 36–62Google Scholar
  5. Bastviken D, Cole J, Pace M, Tranvik L (2004) Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate. Glob Biogeochem Cycles 18:GB4009. doi: 10.1029/2004GB002238 CrossRefGoogle Scholar
  6. Beaulieu JJ, Smolenski RL, Nietch CT, Townsend-Small A, Elovitz MS, Schubauer-Berigan JP (2014) Denitrification alternates between a source and sink of nitrous oxide in the hypolimnion of a thermally stratified reservoir. Limnol Oceanogr 59(2):495–506. doi: 10.4319/lo.2014.59.2.0495 CrossRefGoogle Scholar
  7. Beaulieu JJ, Nietch CT, Young JL (2015) Controls of nitrous oxide production and consumption in reservoirs of the Ohio River Basin. J Geophys Res Biogeosci 120:1995–2010. doi: 10.1002/2015JG002941 CrossRefGoogle Scholar
  8. Benson BB, Krause D Jr (1984) The concentration and isotopic fractionation of oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere. Limnol Oceanogr 29(3):620–632CrossRefGoogle Scholar
  9. Biddanda BA (2012) Lake sentinel: observatory for ecosystem changes in Muskegon Lake. InterChange, Newsletter of the Regional Math and Science Center, Grand Valley State University. http://www.gvsu.edu/rmsc/interchange/2012-may-connections-awri-651.htm
  10. Bocaniov SA, Schiff SL, Smith REH (2012) Plankton metabolism and physical forcing in a productive embayment of a large oligotrophic lake: insights from stable oxygen isotopes. Freshw Biol 57:481–496. doi: 10.1111/j.1365-2427.2011.02715.x CrossRefGoogle Scholar
  11. Brandes JA, Devol AH (1997) Isotopic fractionation of oxygen and nitrogen in coastal marine sediments. Geochim Cosmochim Ac 61(9):1793–1801. doi: 10.1016/S0016-7037(97)00041-0 CrossRefGoogle Scholar
  12. Carter GS, Nalepa TF, Rediske RR (2006) Status and trends of benthic populations in a coastal drowned river mouth lake of Lake Michigan. J Great Lakes Res 32:578–595CrossRefGoogle Scholar
  13. CENR (2000) Integrated assessment of hypoxia in the Northern Gulf of Mexico. National Science and Technology Council Committee on Environment and Natural Resources, Washington, DCGoogle Scholar
  14. Conroy JD, Boegman L, Zhang H, Edwards WJ, Culver DA (2011) “Dead Zone” dynamics in Lake Erie: the importance of weather and sampling intensity for calculated hypolimnetic oxygen depleted rates. Aquat Sci 73(2):289–304. doi: 10.1007/s00027-010-0176-1 CrossRefGoogle Scholar
  15. del Giorgio PA, Peters RH (1994) Patterns in planktonic P:R ratios in lakes: influence of lake trophy and dissolved organic carbon. Limnol Oceanogr 39(4):772–787. doi: 10.4319/lo.1994.39.4.0772 CrossRefGoogle Scholar
  16. Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321:926–929. doi: 10.1126/science.1156401 CrossRefGoogle Scholar
  17. Dila DK, Biddanda BA (2015) From land to lake: contrasting microbial processes across a Great Lakes gradient of carbon and nutrient inventories. J Great Lakes Res 41:75–85CrossRefGoogle Scholar
  18. Dua RD, Bhandari B, Nicholas DJD (1979) Stable isotope studies on the oxidation of ammonia to hydroxylamine by Nitrosomonas europaea. FEBS Lett 106(2):401–404. doi: 10.1016/0014-5793(79)80541-4 CrossRefGoogle Scholar
  19. Emerson S, Quay P, Stump C, Wilbur D, Knox M (1991) O2, Ar, N2, and 222Rn in surface waters of the subarctic ocean: net biological O2 production. Glob Biogeochem Cycles 5(1):49–69. doi: 10.1029/90GB02656 CrossRefGoogle Scholar
  20. Fallon RD, Harrits S, Hanson RS, Brock TD (1980) The role of methane in internal carbon cycling in Lake Mendota during summer stratification. Limnol Oceanogr 25(2):357–360. doi: 10.4319/lo.1980.25.2.0357 CrossRefGoogle Scholar
  21. Feldman DE, Yost HT Jr, Benson BB (1959) Oxygen isotope fractionation in reactions catalyzed by enzymes. Science 129:146–147CrossRefGoogle Scholar
  22. Frame CH, Casciotti KL (2010) Biogeochemical controls and isotopic signatures of nitrous oxide production by a marine ammonia-oxidizing bacterium. Biogeosciences 7:2695–2709. doi: 10.5194/bg-7-2695-2010 CrossRefGoogle Scholar
  23. Freedman P, Canale R, Auer M (1979) The impact of wastewater diversion spray irrigation on water quality in Muskegon County lakes. Rep. 905/9–79–006-A. U.S. Environmental Protection Agency, Washington, DCGoogle Scholar
  24. Friedrich J, Janssen F, Aleynik D et al (2014) Investigating hypoxia in aquatic environments: diverse to addressing a complex phenomenon. Biogeosciences 11:1215–1259. doi: 10.5194/bg-11-1215-2014 CrossRefGoogle Scholar
  25. Fry B, Boyd B (2010) Oxygen concentration and isotope studies of productivity and respiration on the Louisiana continental shelf, July 2007. In: Ohkouchi N et al (eds) Earth, life, and isotopes. Kyoto University Press, Kyoto, pp 223–241Google Scholar
  26. Goreau TJ, Kaplan WA, Wofsy SC, McElroy MB, Valois FW, Watson SW (1980) Production of NO2 and N2O by nitrifying bacteria at reduced concentrations of oxygen. Appl Environ Microbiol 40(3):526–532Google Scholar
  27. Hamilton SK, Ostrom NE (2007) Measurements of the stable isotope ratio of dissolved N2 in 15N tracer experiments. Limnol Oceanogr Methods 5:233–240CrossRefGoogle Scholar
  28. Hanson PC, Bade DL, Carpenter SR, Kratz TK (2003) Lake metabolism: relationships with dissolved organic carbon and phosphorus. Limnol Oceanogr 48(3):1112–1119. doi: 10.4319/lo.2003.48.3.1112 CrossRefGoogle Scholar
  29. Hollocher TC, Tate ME, Nicholas DJ (1981) Oxidation of ammonia by Nitrosomonas europaea. Definite 18O-tracer evidence that hydroxylamine formation involves a mono-oxygenase. J Biol Chem 256:10834–10836Google Scholar
  30. Huttunen JT, Juutinen S, Alm J, Larmola T, Hammar T, Silvola J, Martikainen PJ (2003) Nitrous oxide flux to the atmosphere from the littoral zone of a boreal lake. J Geophys Res 108(D14):4421. doi: 10.1029/2002JD002989 CrossRefGoogle Scholar
  31. Huttunen JT, Väisänen TS, Hellsten SK, Martikainen PJ (2006) Methane fluxes at the sediment-water interface in some boreal lakes and reservoirs. Boreal Environ Res 11:27–34Google Scholar
  32. IPCC (2007) Climate Change 2007: the physical science basis. In: Solomon S et al (eds) Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New YorkGoogle Scholar
  33. IPCC (2013) Climate Change 2013: the physical science Basis. In: Stocker TF et al (eds) Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New YorkGoogle Scholar
  34. Jankowski T, Livingstone DM, Bührer H, Forster R, Niederhauser P (2006) Consequences of the 2003 European heat wave for lake temperature profiles, temperature stability, and hypolimnetic oxygen depletion: implications for a warmer world. Limnol Oceanogr 51(2):815–819. doi: 10.4319/lo.2006.51.2.0815 CrossRefGoogle Scholar
  35. Kaushal SS, Mayer PM, Vidon PG, Smith RM, Pennino MJ, Newcomer TA, Duan S, Welty C, Belt KT (2014) Land use and climate variability amplify carbon, nutrient, and contaminant pulses: a review with management implications. U.S. Environmental Protection Agency Paper 234Google Scholar
  36. Knowles R (1982) Denitrification. Microbiol Rev 46(1):43–70Google Scholar
  37. Kumar S, Nicholas DJD, Williams EH (1983) Definitive 15N NMR evidence that water serves as a source of ‘O’ during nitrite oxidation by Nitrobacter agilis. FEBS Lett 152(1):71–74. doi: 10.1016/0014-5793(83)80484-0 CrossRefGoogle Scholar
  38. Lehman MF, Barnett B, Gélinas Y, Gilbert D, Maranger R, Mucci A, Sundby B, Thibodeau B (2009) Aerobic respiration and hypoxia in the Lower St. Lawrence Estuary: stable isotope ratios of dissolved oxygen constrain oxygen sink partitioning. Limnol Oceanogr 54(6):2157–2169CrossRefGoogle Scholar
  39. Lemon E, Lemon D (1981) Nitrous oxide in freshwaters of the Great Lakes Basin. Limnol Oceanogr 26(5):867–879. doi: 10.4319/lo.1981.26.5.0867 CrossRefGoogle Scholar
  40. Lis G, Wassenaar LI, Hendry MJ (2008) High-precision laser spectroscopy D/H and 18O/16O measurements of microliter natural water samples. Anal Chem 80(1):287–293. doi: 10.1021/ac701716q CrossRefGoogle Scholar
  41. Livingstone DM, Imboden DM (1996) The prediction of hypolimnetic oxygen profiles: a plea for a deductive approach. Can J Fish Aquat Sci 53:924–932. doi: 10.1139/f95-230 CrossRefGoogle Scholar
  42. Mariotti A, Germon JD, Hubert P, Kaiser P, Letolle R, Tardieux A, Tardieux P (1981) Experimental determination of nitrogen kinetic isotope fractionation: some principles: illustration for the denitrification and nitrification processes. Plant Soil 62(3):413–430. doi: 10.1007/BF02374138 CrossRefGoogle Scholar
  43. McCarthy MJ, Carini SA, Liu Z, Ostrom NE, Gardner WS (2013) Oxygen consumption in the water column and sediments of the Gulf of Mexico hypoxic zone. Estuar Coast Shelf S 123:46–53. doi: 10.1016/j.ecss.2013.02.019 CrossRefGoogle Scholar
  44. McNair JN, Gereaux LC, Weinke AD, Sesselmann MR, Kendall ST, Biddanda BA (2013) New methods for estimating components of lake metabolism based on free-water dissolved-oxygen dynamics. Ecol Model 263:251–263. doi: 10.1016/j.ecolmodel.2013.05.010 CrossRefGoogle Scholar
  45. Michigan DEQ (2011) Stage 2 remedial action plan Muskegon Lake Area of Concern. Michigan Department of Environmental Quality, LansingGoogle Scholar
  46. Michmerhuizen CM, Striegl RG, McDonald ME (1996) Potential methane emission from north-temperate lakes following ice melt. Limnol Oceanogr 41(5):985–991. doi: 10.4319/lo.1996.41.5.0985 CrossRefGoogle Scholar
  47. Miettinen H, Pumpanen J, Heiskanen JJ, Aaltonen H, Mammarella I, Ojala A, Levula J, Rantakari M (2015) Towards a more comprehensive understanding of lacustrine greenhouse gas dynamics—two-year measurements of concentrations and fluxes of CO2, CH4, and N2O in a typical boreal lake surrounded by managed forests. Boreal Environ Res 20:75–89Google Scholar
  48. Morse JL, Ardón M, Bernhardt ES (2012) Greenhouse gas fluxes in southeastern U.S. coastal plain wetlands under contrasting land uses. Ecol Appl 22(1):264–280CrossRefGoogle Scholar
  49. Nevison C, Butler JH, Elkins JW (2003) Global distribution of N2O and the ΔN2O-AOU yield in the subsurface ocean. Glob Biogeochem Cycles 17(4):1119. doi: 10.1029/2003GB002068 CrossRefGoogle Scholar
  50. Opdyke MR, Ostrom NE, Ostrom PH (2009) Evidence for the predominance of denitrification as a source of N2O in a temperate agricultural soils based on isotopologue measurements. Glob Biogeochem Cycles 23:GB4018. doi: 10.1029/2009GB003523,  10.1002/2015GL066235
  51. Ortiz-Llorente MJ, Alvarez-Cobelas M (2012) Comparison of biogenic methane emissions from unmanaged estuaries, lakes, oceans, rivers and wetlands. Atmos Environ 59:328–337. doi: 10.1016/j.atmosenv.2012.05.031 CrossRefGoogle Scholar
  52. Ostrom NE, Ostrom PH (2011) The isotopomers of nitrous oxide: analytical considerations and application to resolution of microbial production pathways. In: Baskaran M (ed) Handbook of environmental isotope geochemistry. Springer, New York, pp 453–476Google Scholar
  53. Ostrom NE, Russ ME, Popp B, Rust TM, Karl DM (2000) Mechanisms of nitrous oxide production in the subtropical North Pacific based on determinations of the isotopic abundances of nitrous oxide and di-oxygen. Chemosphere 2:281–290. doi: 10.1016/S1465-9972(00)00031-3 Google Scholar
  54. Ostrom NE, Carrick HJ, Twiss MR, Piwinski L (2005) Evaluation of primary production in Lake Erie by multiple proxies. Oecologia 144:115–124. doi: 10.1007/s00442-005-0032-5 CrossRefGoogle Scholar
  55. Ostrom NE, Pitt A, Sutka R, Ostrom PH, Grandy AS, Huizinga KM, Robertson GP (2007) Isotopologue effects during N2O reduction in soils and in pure cultures of denitrifiers. J Geophys Res 112:G02005. doi: 10.1029/2006JG000287 CrossRefGoogle Scholar
  56. Ostrom NE, Gandhi H, Kamphuis B, DeCamp S, Liu Z, McCarthy MJ, Gardner WS (2014) Oxygen metabolism and water mass mixing in the northern Gulf of Mexico hypoxic zone in 2010. Geochim Cosmochim Acta 140:39–49. doi: 10.1016/j.gca.2014.05.020 CrossRefGoogle Scholar
  57. Pataki DE, Ehleringer JR, Flanagan LB, Yakir D, Bowling DR, Still CJ, Buchmann N, Kaplan JO, Berry JA (2003) The application and interpretation of Keeling plots in terrestrial carbon cycle research. Glob Biogeochem Cycles 17(1):1022. doi: 10.1029/2001GB001850 CrossRefGoogle Scholar
  58. Popp BN, Westley MB, Toyoda S, Miwa T, Dore JE, Yoshida N, Rust TM, Sansone FJ, Russ ME, Ostrom NE, Ostrom PH (2002) Nitrogen and oxygen isotopomeric constraints on the origins and sea-to-air flux of N2O in the oligotrophic subtropical North Pacific gyre. Glob Biogeochem Cycles 16(4):1064. doi: 10.1029/2001GB001806 CrossRefGoogle Scholar
  59. Poth M, Focht DD (1985) 15N kinetic analysis of N2O production by Nitrosomonas europaea: an examination of nitrifier denitrification. Appl Environ Microbiol 49(5):1134–1141Google Scholar
  60. Quiñones-Rivera ZJ, Wissel B, Justić D, Fry B (2007) Partitioning oxygen sources and sinks in a stratified, eutrophic coastal ecosystem using stable oxygen isotopes. Mar Ecol Prog Ser 342:69–83. doi: 10.3354/meps342069 CrossRefGoogle Scholar
  61. Rabalais NN, Diaz RJ, Levin LA, Turner RE, Gilbert D, Zhang J (2010) Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences 7:585–619. doi: 10.5194/bg-7-585-2010 CrossRefGoogle Scholar
  62. Riera JL, Schindler JE, Kratz TK (1999) Seasonal dynamics of carbon dioxide and methane in two clear-water lakes and two bog lakes in northern Wisconsin, U.S.A. Can J Fish Aquat Sci 56:265–274. doi: 10.1139/f98-182 CrossRefGoogle Scholar
  63. Roberts BJ, Russ ME, Ostrom NE (2000) Rapid and precise determination of the δ18O of dissolved gaseous dioxygen via gas chromatography-isotope ratio mass spectrometry. Environ Sci Technol 34(11):2337–2341. doi: 10.1021/es991109d CrossRefGoogle Scholar
  64. Sansone FJ, Popp BN, Rust TM (1997) Stable carbon isotopic analysis of low-level methane in water and gas. Anal Chem 69(1):40–44. doi: 10.1021/ac960241i CrossRefGoogle Scholar
  65. Sasaki Y, Koba K, Yamamoto M, Makabe A, Ueno Y, Nakagawa M, Toyoda S, Yoshida N, Yoh M (2011) Biogeochemistry of nitrous oxide in Lake Kizaki, Japan, elucidated by nitrous oxide isotopomers analysis. J Geophys Res 116:G04030. doi: 10.1029/2010JG001589 CrossRefGoogle Scholar
  66. Scavia D, Allan JD, Arend KK et al (2014) Assessing and addressing the re-eutrophication of Lake Erie: central basin hypoxia. J Great Lakes Res 40:226–246. doi: 10.1016/j.jglr.2014.02.004 CrossRefGoogle Scholar
  67. Seitzinger SP, Kroeze C (1998) Global distribution of nitrous oxide production and N inputs in freshwater and coastal marine ecosystems. Glob Biogeochem Cycles 12(1):93–113CrossRefGoogle Scholar
  68. Seitzinger S, Harrison JA, Böhlke JK, Bouwman AF, Lowrance R, Peterson B, Tobias C, Van Drecht G (2006) Denitrification across landscapes and waterscapes: a synthesis. Ecol Appl 16(6):2064–2090CrossRefGoogle Scholar
  69. Stein LY (2011) Surveying N2O-producing pathways in bacteria. In: Klotz MG (ed) Methods in Enzymology, vol 486. Elsevier Academic Press, San Diego, pp 131–152Google Scholar
  70. Steinman AD, Ogdahl M, Rediske R, Ruetz CR III, Biddanda BA, Nemeth L (2008) Current status and trends in Muskegon Lake, Michigan. J Great Lakes Res 34(1):169–188. doi: 10.3394/0380-1330(2008)34[169:CSATIM]2.0.CO;2
  71. Striegl RG, Michmerhuizen CM (1998) Hydrologic influence on methane and carbon dioxide dynamics at two north-central Minnesota lakes. Limnol Oceanogr 43(7):1519–1529CrossRefGoogle Scholar
  72. Sutka RL, Ostrom NE, Ostrom PH, Gandhi H, Breznak JA (2003) Nitrogen isotopomer site preference of N2O produced by Nitrosomonas europaea and Methylococcus capsulatus Bath. Rapid Commun Mass Spectrom 17(7):738–745. doi: 10.1002/rcm.968 CrossRefGoogle Scholar
  73. Sutka RL, Ostrom NE, Ostrom PH, Breznak JA, Gandhi H, Pitt AJ, Li F (2006) Distinguishing nitrous oxide production from nitrification and denitrification on the basis of isotopomer abundances. Appl Environ Microbiol 72(1):638–644. doi: 10.1128/AEM.72.1.638-644.2006 CrossRefGoogle Scholar
  74. Sutka RL, Adams GC, Ostrom NE, Ostrom PH (2008) Isotopologue fractionation during N2O production by fungal denitrification. Rapid Commun Mass Spectrom 22(24):3989–3996. doi: 10.1002/rcm.3820 CrossRefGoogle Scholar
  75. Tang Z, Engel BA, Pijanowski BC, Lim KJ (2005) Forecasting land use change and its environmental impact at a watershed scale. J Environ Manag 76:35–45. doi: 10.1016/j.jenvman.2005.01.006 CrossRefGoogle Scholar
  76. Taylor PG, Townsend AR (2010) Stoichiometric control of organic carbon-nitrate relationships from the soil to the sea. Nature 464:1178–1181. doi: 10.1038/nature08985 CrossRefGoogle Scholar
  77. Toyoda S, Mutobe H, Yamagishi H, Yoshida N, Tanji Y (2005) Fractionation of N2O isotopomers during production by denitrifier. Soil Biol Biochem 37(8):1535–1545. doi: 10.1016/j.soilbio.2005.01.009 CrossRefGoogle Scholar
  78. Turner RE, Rabalais NN, Justic D (2008) Gulf of Mexico hypoxia: alternate states and a legacy. Environ Sci Technol 42:2323–2327. doi: 10.1021/es071617k CrossRefGoogle Scholar
  79. U.S. EPA (2013) Great lakes areas of concern: Muskegon Lake. U.S. Environmental Protection Agency, Washington, DCGoogle Scholar
  80. Vail J, Meyer A, Weinke A, Biddanda BA (2015) Water quality monitoring: lesson plan for exploring time-series data. J Mich Sci Teach Assoc 60(1):37–48Google Scholar
  81. Walker JT, Stow CA, Geron C (2010) Nitrous oxide emissions from the Gulf of Mexico hypoxic zone. Environ Sci Technol 44(5):1617–1623. doi: 10.1021/es902058t CrossRefGoogle Scholar
  82. Wang H, Wang W, Yin C, Wang Y, Lu J (2006) Littoral zones as the “hotspots” of nitrous oxide (N2O) emission in a hyper-eutrophic lake in China. Atmos Environ 40:5522–5527. doi: 10.1016/j.atmosenv.2006.05.032 CrossRefGoogle Scholar
  83. Wanninkhof R (1992) Relationship between wind speed and gas exchange over the ocean. J Geophys Res 97(C5):7373–7382. doi: 10.1029/92JC00188 CrossRefGoogle Scholar
  84. Weinke AD, Kendall ST, Kroll DJ, Strickler EA, Weinert ME, Holcomb TM, Defore AA, Dila DK, Snider MJ, Gereaux LC, Biddanda BA (2014) Systematically variable planktonic carbon metabolism along a land-to-lake gradient in a Great Lakes coastal zone. J Plankton Res 36:1528–1542. doi: 10.1093/plankt/fbu066 CrossRefGoogle Scholar
  85. Westley MB, Yamagishi H, Popp BN, Yoshida N (2006) Nitrous oxide cycling in the Black Sea inferred from stable isotope and isotopomers distributions. Deep Sea Res Pt II 53:1802–1816. doi: 10.1016/j.dsr2.2006.03.012 CrossRefGoogle Scholar
  86. Whitfield CJ, Aherne J, Baulch HM (2011) Controls on greenhouse gas concentrations in polymictic headwater lakes in Ireland. Sci Total Environ 410–411:217–225. doi: 10.1016/j.scitotenv.2011.09.045 CrossRefGoogle Scholar
  87. Williamson CE, Dodds W, Kratz TK, Palmer MA (2008) Lakes and streams as sentinels of environmental change in terrestrial and atmospheric processes. Front Ecol Environ 6(5):247–254. doi: 10.1890/070140 CrossRefGoogle Scholar
  88. World Meteorological Organization (2008) Guide to meteorological instruments and methods of observation. WMO-No. 8. World Meteorological Organization, GenevaGoogle Scholar
  89. Wrage N, Velthof GL, van Beusichem ML, Oenema O (2001) Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol Biochem 33(12–13):1723–1732. doi: 10.1016/S0038-0717(01)00096-7 CrossRefGoogle Scholar
  90. Yamagishi H, Westley MB, Popp BN, Toyoda S, Yoshida N, Watanabe S, Koba K, Yamanaka Y (2007) Role of nitrification and denitrification on the nitrous oxide cycle in the eastern tropical North Pacific and Gulf of California. J Geophys Res 112:G02015. doi: 10.1029/2006JG000227 CrossRefGoogle Scholar
  91. Yang H, Gandhi H, Ostrom NE, Hegg EL (2014) Isotopic fractionation by a fungal P450 nitric oxide reductase during the production of N2O. Environ Sci Technol 48:10707–10715. doi: 10.1021/es501912d CrossRefGoogle Scholar
  92. Yang H, Andersen T, Dörsch P, Tominaga K, Thrane J-E, Hessen DO (2015) Greenhouse gas metabolism in Nordic boreal lakes. Biogeochemistry 126:211–225. doi: 10.1007/s10533-015-0154-8 CrossRefGoogle Scholar
  93. Yoshida N, Toyoda S (2000) Constraining the atmospheric N2O budget from intramolecular site preference in N2O isotopomers. Nature 405:330–334. doi: 10.1038/35012558 CrossRefGoogle Scholar
  94. Yoshinari T (1976) Nitrous oxide in the sea. Mar Chem 4:189–202. doi: 10.1016/0304-4203(76)90007-4 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Integrative BiologyMichigan State UniversityEast LansingUSA
  2. 2.Annis Water Resources InstituteGrand Valley State UniversityMuskegonUSA

Personalised recommendations