, Volume 131, Issue 3, pp 267–280 | Cite as

Soil organic matter dynamics after afforestation of mountain grasslands in both a Mediterranean and a temperate climate

  • Carlos OrtizEmail author
  • Eduardo Vázquez
  • Agustín Rubio
  • Marta Benito
  • Andreas Schindlbacher
  • Robert Jandl
  • Klaus Butterbach-Bahl
  • Eugenio Díaz-Pinés


We studied the effect of mountain grassland afforestation with conifer trees (Pinus sylvestris, Picea abies and Pinus cembra) on soil organic matter (SOM) cycling and carbon (C) isotopic composition in two contrasting climate areas using a regional approach. Seventeen paired sites (each containing at least 40 years prior afforested and grassland plots) were investigated in the mountains of Central Spain and Western Austria. Topsoil CO2 effluxes were monitored under standardized conditions for six months as a proxy for soil organic carbon (SOC) mineralisation. The bulk C and nitrogen (N) concentrations and their isotopic composition in the soil and in the plants were assessed. The soil C:N ratio was consistently greater after afforestation in both regions, which in Spain was caused by a significant decrease in N concentration. No consistent effect was found on mineralisation rates due to vegetation change. Afforestation produced a more consistent soil 13C enrichment in the Spanish than in the Austrian sites. Our work strongly suggests that increasing altitude in Mediterranean mountain grasslands alleviates water limitation, favouring both plant growth and SOM decomposition, and ultimately accelerating C cycling. In contrast, temperate grassland areas at high altitudes were associated with severe temperature limitations, which constrained SOM transformation processes. In spite of the impact of afforestation on soil biogeochemical processes, C concentrations were marginally affected. We therefore conclude that grassland conversion to coniferous forests does not enhanced C sequestration in the mineral soil, for at least 40 years after land-use change.


Afforestation Carbon cycling Soil incubation Coniferous Grassland Mountain regions 



This study was partially funded by a grant from the government of the Madrid Region (ref. REMEDINAL3-CM MAE-2719). The Ministry of Education, Culture and Sport funded CO’s PhD studies thorough the FPU programme. We thank the Centre for Stable Isotopes at Garmisch-Partenkirchen and Dr Gustavo Saiz for laboratory support; Bernadette Sotier and Klaus Suntinger for their generous help with soil sampling in the Austrian Alps; Dr Hubert Hasenauer and the Department of Soil Science at the University of Natural Resources and Applied Life Sciences in Vienna for providing Austrian meteorological data; Ms Pru Brooke-Turner for her linguistic assistance; and two anonymous reviewers for their constructive comments.

Supplementary material

10533_2016_278_MOESM1_ESM.docx (66 kb)
Supplementary material 1 (DOCX 65 kb)
10533_2016_278_MOESM2_ESM.tiff (1.1 mb)
Supplementary material 2 (TIFF 1173 kb)
10533_2016_278_MOESM3_ESM.tiff (41.5 mb)
Supplementary material 3 (TIFF 42464 kb)


  1. Aerts R (1997) Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439. doi: 10.2307/3546886 CrossRefGoogle Scholar
  2. Awiti AO, Walsh MG, Kinyamario J (2008) Dynamics of topsoil carbon and nitrogen along a tropical forest-cropland chronosequence: evidence from stable isotope analysis and spectroscopy. Agric Ecosyst Environ 127:265–272. doi: 10.1016/j.agee.2008.04.012 CrossRefGoogle Scholar
  3. Balesdent J, Giradin C, Mariotti A (1993) Site-related δ 13C of tree leaves and soil organic matter in a temperate forest. Ecology 74:1713–1721CrossRefGoogle Scholar
  4. Berg B (2000) Litter decomposition and organic matter turnover in northern forest soils. For Ecol Manag 133:13–22. doi: 10.1016/S0378-1127(99)00294-7 CrossRefGoogle Scholar
  5. Berthrong ST, Jobbágy EG, Jackson RB (2009) A global meta-analysis of soil exchangeable cations, pH, carbon and nitrogen with afforestation. Ecol Appl 19:2228–2241. doi: 10.1890/08-1730.1 CrossRefGoogle Scholar
  6. Bird MI, Haberle SG, Chivas AR (1994) Effect of altitude on the carbon-isotope composition of forest and grassland soils from Papua New Guinea. Glob Biogeochem Cycles 8:13–22CrossRefGoogle Scholar
  7. Boutton TW, Archer SR, Midwood AJ et al (1998) δ13C values of soil organic carbon and their use in documenting vegetation change in a subtropical savanna ecosystem. Geoderma 82:5–41. doi: 10.1016/S0016-7061(97)00095-5 CrossRefGoogle Scholar
  8. Brüggemann N, Gessler A, Kayler ZE et al (2011) Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review. Biogeosciences 8:3457–3489. doi: 10.5194/bg-8-3457-2011 CrossRefGoogle Scholar
  9. Camarero JJ, Gutiérrez E (2004) Pace and pattern of recent treeline dynamics: response of ecotones to climatic variability in the Spanish Pyrenees. Clim Chang 63:181–200. doi: 10.1023/B:CLIM.0000018507.71343.46 CrossRefGoogle Scholar
  10. Cañellas I, García FM, Montero G (2000) Silviculture and dynamics of Pinus sylvestris L. stands in Spain. Investig Agrar Sist Y Recur For 1:233–253Google Scholar
  11. Chiti T, Díaz-Pinés E, Rubio A (2012) Soil organic carbon stocks of conifers, broadleaf and evergreen broadleaf forests of Spain. Biol Fertil Soils 48:817–826. doi: 10.1007/s00374-012-0676-3 CrossRefGoogle Scholar
  12. Ciais P, Sabine C, Bala G, et al (2013) Carbon and Other Biogeochemical Cycles. In: Stocker TF, Qin D, Plattner G-K et al. (eds) Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel. Cambridge University, Cambridge pp 465–570Google Scholar
  13. Cleveland CC, Reed SC, Keller AB et al (2014) Litter quality versus soil microbial community controls over decomposition: a quantitative analysis. Oecologia 174:283–294. doi: 10.1007/s00442-013-2758-9 CrossRefGoogle Scholar
  14. Craine JM, Brookshire ENJ, Cramer MD et al (2015) Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils. Plant Soil 396:1–26. doi: 10.1007/s11104-015-2542-1 CrossRefGoogle Scholar
  15. Díaz-Pinés E, Schindlbacher A, Godino M et al (2014) Effects of tree species composition on the CO2 and N2O efflux of a Mediterranean mountain forest soil. Plant Soil 384:243–257. doi: 10.1007/s11104-014-2200-z CrossRefGoogle Scholar
  16. Djukic I, Zehetner F, Tatzber M, Gerzabek MH (2010) Soil organic-matter stocks and characteristics along an Alpine elevation gradient. J Plant Nutr Soil Sci 173:30–38. doi: 10.1002/jpln.200900027 CrossRefGoogle Scholar
  17. Dullinger S, Dirnböck T, Grabherr G (2004) Modelling climate change-driven treeline shifts: relative effects of temperature increase, dispersal and invasibility. J Ecol 92:241–252. doi: 10.1111/j.0022-0477.2004.00872.x CrossRefGoogle Scholar
  18. Emmett BA, Kjønaas OJ, Gundersen P et al (1998) Natural abundance of 15N in forests across a nitrogen deposition gradient. For Ecol Manag 101:9–18. doi: 10.1016/S0378-1127(97)00121-7 CrossRefGoogle Scholar
  19. Eshetu Z (2004) Natural 15N abundance in soils under young-growth forests in Ethiopia. For Ecol Manag 187:139–147. doi: 10.1016/S0378-1127(03)00315-3 CrossRefGoogle Scholar
  20. Fox J, Weisberg S (2011) Nonlinear regression and nonlinear least squares in R. An R companion to applied regression. Sage, Thousand Oaks, pp 1–20Google Scholar
  21. García Romero A, Muñoz Jiménez J (2010) Modificaciones recientes de la cubierta nival y evolución de la vegetación supraforestal en la Sierra de Guadarrama, España: el Puerto de los Neveros. Cuad Investig Geográfica 36:109–143CrossRefGoogle Scholar
  22. Garcia-Pausas J, Casals P, Camarero L et al (2007) Soil organic carbon storage in mountain grasslands of the Pyrenees: effects of climate and topography. Biogeochemistry 82:279–289. doi: 10.1007/s10533-007-9071-9 CrossRefGoogle Scholar
  23. Garten CT, Cooper LW, Post WM, Hanson PJ (2000) Climate controls on forest soil C isotope ratios in the Southern Appalachian Mountains. Ecology 81:1108–1119. doi: 10.1890/0012-9658(2000)081[1108:CCOFSC]2.0.CO;2 CrossRefGoogle Scholar
  24. Grüneberg E, Schöning I, Kalko EKV, Weisser WW (2010) Regional organic carbon stock variability: a comparison between depth increments and soil horizons. Geoderma 155:426–433. doi: 10.1016/j.geoderma.2010.01.002 CrossRefGoogle Scholar
  25. Guidi C, Vesterdal L, Gianelle D, Rodeghiero M (2014) Changes in soil organic carbon and nitrogen following forest expansion on grassland in the Southern Alps. For Ecol Manag 328:103–116. doi: 10.1016/j.foreco.2014.05.025 CrossRefGoogle Scholar
  26. Guo LB, Gifford RM (2002) Soil carbon stocks and land use change: a meta analysis. Glob Chang Biol 8:345–360. doi: 10.1046/j.1354-1013.2002.00486.x CrossRefGoogle Scholar
  27. Gutiérrez-Girón A, Díaz-Pinés E, Rubio A, Gavilán RG (2015) Both altitude and vegetation affect temperature sensitivity of soil organic matter decomposition in Mediterranean high mountain soils. Geoderma 237–238:1–8. doi: 10.1016/j.geoderma.2014.08.005 CrossRefGoogle Scholar
  28. Hasenauer H, Merganicova K, Petritsch R, Pietsch SA (2003) Validating daily climate interpolations over complex terrain in Austria. Agric For Meteorol 119:87–107CrossRefGoogle Scholar
  29. Hiltbrunner D, Zimmermann S, Hagedorn F (2013) Afforestation with Norway spruce on a subalpine pasture alters carbon dynamics but only moderately affects soil carbon storage. Biogeochemistry 115:251–266. doi: 10.1007/s10533-013-9832-6 CrossRefGoogle Scholar
  30. Hitz C, Egli M, Fitze P (2001) Below-ground and above-ground production of vegetational organic matter along a climosequence in alpine grasslands. J Plant Nutr Soil Sci 164:389–397. doi: 10.1002/1522-2624(200108)164:4<389:AID-JPLN389>3.0.CO;2-A CrossRefGoogle Scholar
  31. Högberg P (1997) 15N natural abundance in soil-plant systems. New Phytol 137:179–203CrossRefGoogle Scholar
  32. Högberg P, Johhannisson C (1993) l5N abundance of forests is correlated with losses of nitrogen. Plant Soil 157:147–150CrossRefGoogle Scholar
  33. Högberg P, Ekblad A, Nordgren A (2005) Factors determining the 13C abundance of soil-respired CO2 in Boreal forests. Stable isotopes and biosphere-atmosphere interactions: processes and biological controls. Elsevier, Amsterdam, pp 47–68CrossRefGoogle Scholar
  34. Houghton RA, House JI, Pongratz J et al (2012) Carbon emissions from land use and land-cover change. Biogeosciences 9:5125–5142. doi: 10.5194/bg-9-5125-2012 CrossRefGoogle Scholar
  35. IUSS Working Group WRB (2014) World reference base for soil resources. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports 106:191Google Scholar
  36. Jackson RB, Banner JL, Jobbágy EG et al (2002) Ecosystem carbon loss with woody plant invasion of grasslands. Nature 418:623–626. doi: 10.1038/nature00910 CrossRefGoogle Scholar
  37. Jobbágy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436. doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2 CrossRefGoogle Scholar
  38. Kammer A, Hagedorn F, Shevchenko I et al (2009) Treeline shifts in the Ural mountains affect soil organic matter dynamics. Glob Chang Biol 15:1570–1583. doi: 10.1111/j.1365-2486.2009.01856.x CrossRefGoogle Scholar
  39. Köck R, Härtel E, Holtermann C (2002) Wechselwirkungen zwischen Vegetation und Bodenfeuchtigkeits-Dynamik in der subalpinen Stufe der Nordöstlichen Kalkalpen Österreichs. Cent für das gesamte Forstwes 119:297–306Google Scholar
  40. Körner C (1989) The nutritional status of plants from high altitudes. Oecologia 81:379–391. doi: 10.1007/BF00377088 CrossRefGoogle Scholar
  41. Körner C, Farquhar GD, Wong SC (1991) Carbon isotope discrimination by plants follows latitudinal and altitudinal trends. Oecologia 88:30–40CrossRefGoogle Scholar
  42. Le Maitre DC, Scott DF, Colvin C (1999) A review of information on interactions between vegetation and groundwater. Water SA 25: 137–152. doi:
  43. Lehmann J, Kleber M (2015) The contentious nature of soil organic matter. Nature 528:60–68. doi: 10.1038/nature16069 CrossRefGoogle Scholar
  44. Leifeld J, Zimmermann M, Fuhrer J, Conen F (2009) Storage and turnover of carbon in grassland soils along an elevation gradient in the Swiss Alps. Glob Chang Biol 15:668–679. doi: 10.1111/j.1365-2486.2008.01782.x CrossRefGoogle Scholar
  45. Liao JD, Boutton TW, Jastrow JD (2006) Organic matter turnover in soil physical fractions following woody plant invasion of grassland: evidence from natural 13C and 15N. Soil Biol Biochem 38:3197–3210. doi: 10.1016/j.soilbio.2006.04.004 CrossRefGoogle Scholar
  46. Livingston GP, Hutchinson GL (1995) Enclosure-based measurement of trace gas exchange: applications and sources of error. In: Matson PA, Harriss RC (eds) Biogenic trace gases: measuring emissions from soil and water. Blackwell Scientific Publications, Oxford, pp 11–51Google Scholar
  47. MacDonald D, Crabtree JR, Wiesinger G et al (2000) Agricultural abandonment in mountain areas of Europe: environmental consequences and policy response. J Environ Manag 59:47–69. doi: 10.1006/jema.1999.0335 CrossRefGoogle Scholar
  48. Macdonald CA, Thomas N, Robinson L et al (2009) Physiological, biochemical and molecular responses of the soil microbial community after afforestation of pastures with Pinus radiata. Soil Biol Biochem 41:1642–1651. doi: 10.1016/j.soilbio.2009.05.003 CrossRefGoogle Scholar
  49. Marey-Pérez MF, Rodríguez-Vicente V (2009) Forest transition in Northern Spain: local responses on large-scale programmes of field-afforestation. Land Use Policy 26:139–156. doi: 10.1016/j.landusepol.2008.02.004 CrossRefGoogle Scholar
  50. Mariotti A, Germon JC, Hubert P et al (1981) Experimental determination of nitrogen kinetic frationation: some principles; illustration for the denitrification and nitrification process. Plant Soil 62:413–430CrossRefGoogle Scholar
  51. Martinelli LA, Piccolo MC, Townsend AR et al (1999) Nitrogen stable isotopic composition of leaves and soil: tropical versus temperate forests. Biogeochemistry 46:45–65. doi: 10.1007/BF01007573 Google Scholar
  52. McCarron JK, Knapp AK, Blair JM (2003) Soil C and N responses to woody plant expansion in a mesic grassland. Plant Soil 257:183–192. doi: 10.1023/A:1026255214393 CrossRefGoogle Scholar
  53. Michener R, Lajtha K (2007) Stable isotopes in ecology and environmental science. Blackwell, Oxford. doi: 10.1899/0887-3593-028.002.0516 CrossRefGoogle Scholar
  54. Nadelhoffer KJ, Shaver G, Fry B et al (1996) 15N natural abundances and N use by tundra plants. Oecologia 107:386–394CrossRefGoogle Scholar
  55. Nazaries L, Tottey W, Robinson L et al (2015) Shifts in the microbial community structure explain the response of soil respiration to land-use change but not to climate warming. Soil Biol Biochem 89:123–134. doi: 10.1016/j.soilbio.2015.06.027 CrossRefGoogle Scholar
  56. Paul EA, Morris SJ, Bohm S (2001) The determination of soil C pool sizes and turnover rates: Biophysical fractionation and tracers. In: Kimble JM, Follett RF, Stewart BA, Lal R (eds) Assessment methods for soil carbon. Lewis Publisher, Boca Raton, pp 193–206Google Scholar
  57. Pérez-Cruzado C, Mansilla-Salinero P, Rodríguez-Soalleiro R, Merino A (2012) Influence of tree species on carbon sequestration in afforested pastures in a humid temperate region. Plant Soil 353:333–353. doi: 10.1007/s11104-011-1035-0 CrossRefGoogle Scholar
  58. Pérez-Cruzado C, Sande B, Omil B et al (2014) Organic matter properties in soils afforested with Pinus radiata. Plant Soil 374:381–398. doi: 10.1007/s11104-013-1896-5 CrossRefGoogle Scholar
  59. Pinheiro JC, Bates DM, DebRoy S, R Core Team (2016) nlme: Linear and Nonlinear Mixed Effects ModelsGoogle Scholar
  60. Poeplau C, Don A (2013) Sensitivity of soil organic carbon stocks and fractions to different land-use changes across Europe. Geoderma 192:189–201. doi: 10.1016/j.geoderma.2012.08.003 CrossRefGoogle Scholar
  61. Poeplau C, Don A, Vesterdal L et al (2011) Temporal dynamics of soil organic carbon after land-use change in the temperate zone—carbon response functions as a model approach. Glob Chang Biol 17:2415–2427. doi: 10.1111/j.1365-2486.2011.02408.x CrossRefGoogle Scholar
  62. Pörtl K, Zechmeister-Boltenstern S, Wanek W et al (2007) Natural 15N abundance of soil N pools and N2O reflect the nitrogen dynamics of forest soils. Plant Soil 295:79–94. doi: 10.1007/s11104-007-9264-y CrossRefGoogle Scholar
  63. Post WM, Kwon KC (2000) Soil carbon sequestration and land-use change: processes and potential. Glob Chang Biol 6:317–327. doi: 10.1046/j.1365-2486.2000.00308.x CrossRefGoogle Scholar
  64. Post WM, Emanuel WR, Zinke PJ, Stangenberger AG (1982) Soil carbon pools and world life zones. Nature 298:156–159. doi: 10.1038/298156a0 CrossRefGoogle Scholar
  65. Powlson DS, Smith P, Coleman K et al (1998) A European network of long-term sites for studies on soil organic matter. Soil Tillage Res 47:263–274. doi: 10.1016/S0167-1987(98)00115-9 CrossRefGoogle Scholar
  66. Poyatos R, Latron J, Llorens P (2003) Land use and land cover change after agricultural abandonment. Mt Res Dev 23:362–368. doi: 10.1659/0276-4741(2003)023[0362:LUALCC]2.0.CO;2 CrossRefGoogle Scholar
  67. R Core Team (2015) R: a language and environment for statistical computing. ViennaGoogle Scholar
  68. Richter DD, Markewitz D, Trumbore SE, Wells CG (1999) Rapid accumulation and turnover of soil carbon in a re-establishing forest. Nature 400:56–58. doi: 10.1038/21867 CrossRefGoogle Scholar
  69. Risch AC, Jurgensen MF, Page-Dumroese DS et al (2008) Long-term development of above- and below-ground carbon stocks following land-use change in subalpine ecosystems of the Swiss National Park. Can J For Res 38:1590–1602. doi: 10.1139/X08-014 CrossRefGoogle Scholar
  70. Rodeghiero M, Cescatti A (2005) Main determinants of forest soil respiration along an elevation/temperature gradient in the Italian Alps. Glob Chang Biol 11:1024–1041. doi: 10.1111/j.1365-2486.2005.00963.x CrossRefGoogle Scholar
  71. Ross DJ, Tate KR, Scott NA et al (2002) Afforestation of pastures with Pinus radiata influences soil carbon and nitrogen. Aust J Soil Res 40:1303–1318CrossRefGoogle Scholar
  72. Sánchez-Palomares O, Sánchez F, Carretero MP (1999) Modelos y cartografía de estimaciones climáticas termopluviométricas para la España peninsular. Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Ministerio de Agricultura, Pesca y Alimentación. 192 p. MadridGoogle Scholar
  73. Schierl R (1991) Saure Perkolation von Bodenproben aus dem Höglwald. Ökosystemforsch. Höglwald Beiträge zur Auswirkung von saurer Beregnung und Kalkung einem FichtenaltbestandGoogle Scholar
  74. Schindlbacher A, de Gonzalo C, Díaz-Pinés E et al (2010) Temperature sensitivity of forest soil organic matter decomposition along two elevation gradients. J Geophys Res 115:G03018. doi: 10.1029/2009JG001191 CrossRefGoogle Scholar
  75. Schinner F, Öhlinger R, Beck T et al (1993) Kohlenstof. In: Schinner F, Öhlinger R, Kandeler E, Margesin R (eds) Bodenbiol. Arbeitsmethoden. Springer, Berlin, p 344CrossRefGoogle Scholar
  76. Simmons JA, Fernández IJ, Briggs RD, Delaney MT (1996) Forest floor carbon pools and fluxes along a regional climate gradient in Maine, USA. For Ecol Manag 84:81–95CrossRefGoogle Scholar
  77. Smal H, Olszewska M (2008) The effect of afforestation with Scots pine (Pinus silvestris L.) of sandy post-arable soils on their selected properties. II. Reaction, carbon, nitrogen and phosphorus. Plant Soil 305:171–187. doi: 10.1007/s11104-008-9538-z CrossRefGoogle Scholar
  78. Smith P, Bustamante M, Ahammad H, et al. (2014) Agriculture, Forestry and Other Land Use (AFOLU). In: Ofer O, Pichs-Madruga R, Sokona Y, et al. (eds) Climate Change in 2014 Mitig. Clim. Chang. Contrib. Work. Gr. III to Fifth Assess. Rep. Intergov. Panel Clim. Chang. Cambridge University Press, Cambridge pp 811–922Google Scholar
  79. Tasser E, Walde J, Tappeiner U et al (2007) Land-use changes and natural reforestation in the Eastern Central Alps. Agric Ecosyst Environ 118:115–129. doi: 10.1016/j.agee.2006.05.004 CrossRefGoogle Scholar
  80. Thuille A, Schulze E-D (2006) Carbon dynamics in successional and afforested spruce stands in Thuringia and the Alps. Glob Chang Biol 12:325–342. doi: 10.1111/j.1365-2486.2005.01078.x CrossRefGoogle Scholar
  81. Tiunov AV (2007) Stable isotopes of carbon and nitrogen in soil ecological studies. Biol Bull 34:395–407. doi: 10.1134/S1062359007040127 CrossRefGoogle Scholar
  82. Vitousek PM, Shearer G, Kohl DH (1989) Foliar 15N natural abundance in Hawaiian rainforest: patterns and possible mechanisms. Oecologia 78:383–388. doi: 10.1007/BF00379113 CrossRefGoogle Scholar
  83. von Lützow M, Kögel-Knabner I, Ekschmitt K et al (2006) Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review. Eur J Soil Sci 57:426–445. doi: 10.1111/j.1365-2389.2006.00809.x CrossRefGoogle Scholar
  84. Walter H (1985) Vegetation of the earth and ecological systems of the geobiosphere, vol 3. Springer, BerlinCrossRefGoogle Scholar
  85. Wang S, Fan J, Song M et al (2013a) Patterns of SOC and soil 13C and their relations to climatic factors and soil characteristics on the Qinghai–Tibetan Plateau. Plant Soil 363:243–255. doi: 10.1007/s11104-012-1304-6 CrossRefGoogle Scholar
  86. Wang W, Zeng W, Chen W et al (2013b) Soil respiration and organic carbon dynamics with grassland conversions to woodlands in temperate China. PLoS ONE 8:1–10. doi: 10.1371/journal.pone.0071986 Google Scholar
  87. Werth M, Kuzyakov Y (2010) 13C fractionation at the root–microorganisms–soil interface: a review and outlook for partitioning studies. Soil Biol Biochem 42:1372–1384. doi: 10.1016/j.soilbio.2010.04.009 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Agricultural ProductionTechnical University of MadridMadridSpain
  2. 2.Department of Natural Systems and ResourcesTechnical University of MadridMadridSpain
  3. 3.Department of Forest Ecology and Soils, Federal Research and Training Centre for ForestsNatural Hazards and Landscape - BFWViennaAustria
  4. 4.Institute of Meteorology and Climate ResearchKarlsruhe Institute of TechnologyGarmisch-PartenkirchenGermany

Personalised recommendations