, Volume 131, Issue 1–2, pp 1–15 | Cite as

Small scale variability of vertical water and dissolved organic matter fluxes in sandy Cambisol subsoils as revealed by segmented suction plates

  • Timo LeinemannEmail author
  • R. Mikutta
  • K. Kalbitz
  • F. Schaarschmidt
  • G. Guggenberger


Dissolved organic matter (DOM) is considered as a major carbon source in subsoils. As soil water fluxes are highly variable at small scale, and transport versus sorptive retention of DOM is related to water flux and associated contact time with minerals, knowledge of the small scale spatial variability of the dissolved organic carbon (DOC) concentrations and fluxes into the subsoil is decisive for a solid estimation of organic carbon (OC) translocation into the subsoil. Here, we made advantage of novel segmented suction plates (4 × 4 segments, each 36 cm2) to analyze the small scale spatial and temporal variability of DOC transport at 10, 50 and 150 cm depth of three subsoil observatories (approximately 50 m apart) in a sandy Dystric Cambisol under beech in the Grinderwald, 40 km northwest from Hannover, Germany. Water fluxes, DOC concentrations and fluxes as well as the specific UV absorbance (SUVA) at 280 nm were determined in weekly samples from August 2014 to November 2015 for each individual segment. The DOC fluxes decreased with depth (19.6 g C m−2 year−1, 10 cm; 1.2 g C m−2 year−1, 150 cm) and were strongly related to the water fluxes. The SUVA at 280 nm also decreased with depth (0.03 L mg C−1 cm−1, 10 cm; 0.01 L mg C−1 cm−1, 150 cm), indicating a selective retention of aromatic moieties, that was eased with increasing water flux at least in the subsoil. The proportion of temporal fluctuations and small scale variability on the total variance of each parameter where determined by the calculation of intra class correlations. The seasonal heterogeneity and the small scale spatial heterogeneity were identified to be of major importance. The importance of the small scale spatial heterogeneity strongly increased with depth, pointing towards the stability of flow paths and suggesting that at a given substrate hydrological processes rather than physicochemical processes are decisive for the sorptive retention of DOM and the variability of OC accumulation in the subsoil. Our results clearly show the demand of small scale sampling for the identification of processes regarding carbon cycling in the subsoil.


DOC flux SUVA Segmented suction plates Small scale variability Beech forest 



Funding of the research was provided by the Deutsche Forschungsgemeinschaft DFG within the research unit FOR 1806 “The Forgotten Part of Carbon Cycling: Organic Matter Storage and Turnover in Subsoils (SUBSOM)”. We would like to thank Dr. Stefan Wessel-Bothe of ecoTech Umwelt-Meßsysteme GmbH for help with establishing the soil observatories and Heike Steffen, Anne Kathrin Herwig and numerous student helpers for support in sample processing.

Supplementary material

10533_2016_259_MOESM1_ESM.pdf (353 kb)
Supplementary material 1 (PDF 352 kb)


  1. Anderson S, Ingvar Nilsson S (2001) Influence of pH and temperature on microbial activity, substrate availability of soil-solution bacteria and leaching of dissolved organic carbon in a mor humus. Soil Biol Biochem 33:1181–1191. doi: 10.1016/S0038-0717(01)00022-0 CrossRefGoogle Scholar
  2. Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Statt Softw of Stat Softw 67:1–48. doi: 10.18637/jss.v067.i01 Google Scholar
  3. Bogner C, Borken W, Huwe B (2012) Impact of preferential flow on soil chemistry of a podzol. Geoderma 175–176:37–46. doi: 10.1016/j.geoderma.2012.01.019 CrossRefGoogle Scholar
  4. Buckingham S, Tipping E, Hamilton-Taylor J (2008) Concentrations and fluxes of dissolved organic carbon in OK topsoil. Sci Total Environ 407:460–470. doi: 10.1016/j.scitotenv.2008.08.020 CrossRefGoogle Scholar
  5. Bundt M, Jäggi M, Blaser P, Siegwolf R, Hagedorn F (2001) Carbon and nitrogen dynamics in preferential flow paths and matrix of a forest soil. Soil Sci Soc Am J 65:1529–1538. doi: 10.2136/sssaj2001.6551529x CrossRefGoogle Scholar
  6. Currie WS, Aber JD, McDowell WH, Boone RD, Magill AH (1996) Vertical transport of dissolved organic C and N under long-term N amendments in pine and hardwood forests. Biogeochemistry 35:471–505. doi: 10.1007/BF02183037 CrossRefGoogle Scholar
  7. Chabbi A, Kögel-Knabner I, Rumpel C (2009) Stabilized carbon in subsoil horizons is located in spatially distinct parts of the soil profile. Soil Biol Biochem 41:256–261. doi: 10.1016/j.soilbio.2008.10.033 CrossRefGoogle Scholar
  8. Chin Y-P, Alken G, O’Loughlin E (1994) Molecular wright, polydispersity, and sprectroscopic properties of aquatic humic substances. Environ Sci Technol 28:1853–1858. doi: 10.1021/es00060a015 CrossRefGoogle Scholar
  9. Clark HM, Chapmann PJ, Adamson JK, Lane SN (2005) Influence of draught-induced acidification on the mobility of dissolved organic carbon in peat soils. Glob Chang Biol 11:791–809. doi: 10.1111/j.1365-2486.2005.00937.x CrossRefGoogle Scholar
  10. Don A, Bärwolff M, Kalbitz K, Andruschkewitsch R, Jungkunst HF, Schulze ED (2012) No rapid soil carbon loss after a windthrow event in the high tatra. For Ecol Manag 276:239–246. doi: 10.1016/j.foreco.2012.04.010 CrossRefGoogle Scholar
  11. Dosskey MG, Bertsch PM (1997) Transport of dissolved organic matter through a sandy forest soil. Soil Sci Soc Am J 61:920–927. doi: 10.2136/sssaj1997.03615995006100030030x CrossRefGoogle Scholar
  12. Fröberg M, Berggren D, Bergkvist B, Bryant C, Mulder J (2006) Concentration and fluxes of dissolved organic carbon (DOC) in three Norway spruce stands along a climatic gradient in Sweden. Biogeochemistry 77:1–23. doi: 10.1007/s10533-004-0564-5 CrossRefGoogle Scholar
  13. Flury M, Flühler H, Jury WA, Leuenberger J (1994) Susceptibility of soils to preferential flow of water: a field study. Water Resour Res 30:1945–1954. doi: 10.1029/94WR00871 CrossRefGoogle Scholar
  14. Ghestem M, Sidle RC, Stokes A (2011) The influence of plant root systems on subsurface flow: implications for slope stability. BioScience 61:869–879. doi: 10.1525/bio.2011.61.11.6 CrossRefGoogle Scholar
  15. Göttlein A, Stanjek H (1996) Mico-scale variation of solid-phase properties and soil solution chemistry in a forest podzol and its relation to soil horizons. Eur J Soil Sci 47:627–636. doi: 10.1111/j.1365-2389.1996.tb01861.x CrossRefGoogle Scholar
  16. Guggenberger G, Kaiser K (2003) Dissolved organic matter in soil: challenging the paradigm of sorptive preservation. Geoderma 113:293–310. doi: 10.1016/S0016-7061(02)00366-X CrossRefGoogle Scholar
  17. Hagedorn F, Bundt M (2002) The age of preferential flow paths. Geoderma 108:119–132. doi: 10.1016/S0016-7061(02)00129-5 CrossRefGoogle Scholar
  18. Hagedorn F, Kaiser K, Feyen H, Schleppi P (2000) Effects of redox conditions and flow processes on the mobility of dissolved organic carbon and nitrogen in a forest soil. J Environ Qual 29:288–297. doi: 10.2134/jeq2000.00472425002900010036x CrossRefGoogle Scholar
  19. Hagedorn F, Bruderhofer N, Ferrari A, Nklaus PA (2015) Tracking litter-derived dissolved organic matter along a soil chronosequence using 14C imaging: biodegradation, physico-chemical retention or preferential flow. Soil Biol Biochem 88:333–343. doi: 10.1016/j.soilbio.2015.06.014 CrossRefGoogle Scholar
  20. Hendrickx J, Flury M (2001) Uniform and preferential flow mechanisms in the vadose zone. In: Council NR (ed) Conceptual models of flow and transport in the fractured vadose zone. National Academy, Washington, pp 149–187. doi: 10.17226/10102 Google Scholar
  21. Hopp L, Pfeiffer S, Durner W (2006) Spatial variability of arsenic and chromium in the soil water at a former wood preserving site. J Contam Hydrol 85:159–178. doi: 10.1016/j.jconhyd.2006.01.005 CrossRefGoogle Scholar
  22. Hur J, Lee BM, Shin H-S (2011) Microbial degradation of dissolved organic matter (DOM) and its influence on phenanthrene–DOM interactions. Chemosphere 85:1360–1367. doi: 10.1016/j.chemosphere.2011.08.001 CrossRefGoogle Scholar
  23. Jardine PM, Wilson GV, McCarthy JF, Luxmoore RJ, Taylor DL, Zelazny LW (1990) Hydrogeochemical processes controlling the transport of dissolved organic carbon through a forested hillslope. J Contam Hydrol 6:3–19. doi: 10.1016/0169-7722(90)90008-5 CrossRefGoogle Scholar
  24. Jarvis NJ (2007) A review of non-equilibrium water flow and solute transport in soil macropores: principles, controlling factors and consequences for water quality. Eur J Soil Sci 58:523–546. doi: 10.1111/j.1365-2389.2007.00915.x CrossRefGoogle Scholar
  25. Johnson WD, Koch GG (2011) Intraclass correlation coefficient. In: Lovric M (ed) International encyclopedia of statistical science. Springer, Berlin, pp 685–687. doi: 10.1007/978-3-642-04898-2_309 CrossRefGoogle Scholar
  26. Kaiser K, Guggenberger G (2005) Storm flow flushing in a structured soil changes the composition of dissolved organic matter leached into the subsoil. Geoderma 127:177–187. doi: 10.1016/j.geoderma.2004.12.009 CrossRefGoogle Scholar
  27. Kaiser K, Kalbitz K (2012) Cycling downwards-dissolved organic matter in soil. Soil Biol Biochem 52:29–32. doi: 10.1016/j.soilbio.2012.04.002 CrossRefGoogle Scholar
  28. Kaiser K, Guggenberger G, Haumaier L, Zech W (2002) The composition of dissolved organic matter in forest soil solutions: changes induced by seasons and passage through the mineral soil. Org Geochem 33:307–318. doi: 10.1016/S0146-6380(01)00162-0 CrossRefGoogle Scholar
  29. Kalbitz K, Kaiser K (2008) Contribution of dissolved organic matter to carbon storage in forest mineral soils. J Plant Nutr Soil Sci 171:52–60. doi: 10.1002/jpln.200700043 CrossRefGoogle Scholar
  30. Kalbitz K, Solinger S, Parker J-H, Michalzik B, Matzner E (2000) Controls on the dynamics of dissolved organic matter in soil: a review. Soil Sci 165:277–304. doi: 10.1097/00010694-200004000-00001 CrossRefGoogle Scholar
  31. Kalbitz K, Schmerwitz J, Schwesig D, Matzner E (2003) Biodegradation of soil-derived dissolved organic matter as related to its properties. Geoderma 113:273–291. doi: 10.1016/S0016-7061(02)00365-8 CrossRefGoogle Scholar
  32. Kalbitz K, Zuber T, Park J-H, Matzner E (2004) Environmental controls on concentrations and fluxes of dissolved organic matter in the forest floor and in soil solution. In: Matzner E (ed) Ecological studies. Biogeochemistry of forested catchments in a changing environment, vol 172. Springer, Berlin. doi: 10.1007/978-3-662-06073-5_19 Google Scholar
  33. Kalbitz K, Schwesig D, Rethemeyer J, Matzner E (2005) Stabilization of dissolved organic matter by sorption to the mineral soil. Soil Biol Biochem 37:1319–1331. doi: 10.1016/j.soilbio.2004.11.028 CrossRefGoogle Scholar
  34. Kirfel K, Hertel D, Leuschner C (2016) Vertical variability and density of fine roots in the top and subsoils of six European beech forests along an edaphic gradient in Lower Saxony (in preparation)Google Scholar
  35. Kuzyakov Y, Blagodatskaya E (2015) Microbial hotspots and hot moments in soil: concept & review. Soil Biol Biochem 83:184–199. doi: 10.1016/j.soilbio.2015,01,025 CrossRefGoogle Scholar
  36. Lehmann J, Kleber M (2015) The contentious nature of soil organic matter. Nature 528:60–68. doi: 10.1038/nature16069 CrossRefGoogle Scholar
  37. Lenth VL (2016) Least-squares means: the R Package lsmeans. J Stat Softw. doi: 10.18637/jss.v069.i01 Google Scholar
  38. McCarthy JF, Gu B, Liang L, Mas-Pla J, Williams TM, Yeh T-CJ (1996) Field tracer tests on the mobility of natural organic matter in a sandy aquifer. Water Resour Res 32:1223–1238. doi: 10.1029/96WR00285 CrossRefGoogle Scholar
  39. McDowell WH, Likens GE (1988) Origin, composition, and flux of dissolved organic carbon in the hubbard brook valley. Ecol Monogr 58:177–195. doi: 10.2307/2937024 CrossRefGoogle Scholar
  40. Mertens J, Vanderborght J, Kasteel R, Pütz T, Merckx R, Feyen J, Smolders E (2007) Dissolved organic carbon fluxes under Bare soil. J Environ Qual 36:597–606. doi: 10.2134/jeq2006.0368 CrossRefGoogle Scholar
  41. Michalzik B, Kalbitz K, Park J-H, Solinger S, Matzner E (2001) Fluxes and concentrations of dissolved organic carbon and nitrogen–a synthesis for temperate forests. Biogeochemistry 52:173–205. doi: 10.1023/A:1006441620810 CrossRefGoogle Scholar
  42. Mikutta R, Kleber M, Torn MS, Jahn R (2006) Stabilization of soil organic matter: association with minerals or chemical recalcitrance? Biogeochemistry 77:25–56. doi: 10.1007/s10533-005-0712-6 CrossRefGoogle Scholar
  43. Moore TR (1989) Dynamics of dissolved organic carbon in forested and disturbed catchments, Westland, New Zealland 1. Maimai. Water Resour Res 25:1321–1330. doi: 10.1029/WR025i006p01321 CrossRefGoogle Scholar
  44. Neff JC, Asner GP (2001) Dissolved organic carbon in terrestrial ecosystems: synthesis and a model. Ecosystems 4:29–48. doi: 10.1007/s100210000058 CrossRefGoogle Scholar
  45. Niebuhr J, Heinze S, Mikutta R, Preusser S, Kirfel K, Hertel D, Kandeler E, Leuschner C, Marschner B (2016) Variability of microbial activity and substrate utilization patterns in different subsoil horizons of a sandy Cambisol under European beech. Soil Biol Biochem (submitted)Google Scholar
  46. Nielsen KE, Ladekarl UL, Nørnberg P (1999) Dynamic soil processes on heathland due to changes in vegetation to oak and Sitka spruce. Forest Ecol Manag 114:107–116. doi: 10.1016/S0378-1127(98)00385-5 CrossRefGoogle Scholar
  47. Peacock M, Freeman C, Gauci V, Lebron I, Evans ED (2015) Investigations of freezing and cold storage for the analysis of peatland dissolved organic carbon (DOC) and absorbance properties. Environ Sci Process Impacts 17:1290–1301. doi: 10.1039/c5em00126a CrossRefGoogle Scholar
  48. Qualles RG, Haines BL (1992) Biodegradability of dissolved organic matter in forest throughfall, soil solution, and stream water. Soil Sci Soc Am J 56:578–586. doi: 10.2136/sssaj1992.03615995005600020038x CrossRefGoogle Scholar
  49. Rieckh H, Gerke HH, Siemens J, Sommer M (2014) Water and dissolved carbon fluxes in an eroding soil landscape depending on terrain position. Vadose Zone J. doi: 10.2136/vzj2013.10.0173 Google Scholar
  50. Sawicka K, Monteith DT, Vaguelova EI, Wade AJ, Clark JM (2016) Fine-scale temporal characterization of trends in soil water dissolved organic carbon and potential drivers. Ecol Indic. doi: 10.1016/j.ecolind.2015.12.028 Google Scholar
  51. Scheel T, Dörfler C, Kalbitz K (2007) Precipitation of dissolved organic matter by aluminum stabilizes carbon in acidic forest soils. Soil Sci Soc Am J 71:64–74. doi: 10.2136/sssaj2006.0111 Google Scholar
  52. Stevens DP, Cox JW, Chittleborough DJ (1999) Pathways of phosphorus, nitrogen, and carbon movement over and through texturally differentiated soils, South Australia. Aust J Soil Res 37:679–693Google Scholar
  53. Tipping E, Rigg E, Harrison AF, Ineson P, Taylor K, Benham D, Poskitt J, Rowland AP, Bol R, Harkness DD, Woof C (1999) Climatic influences on the leaching of dissolved organic matter from upland UK moorland soils, investigated by a field manipulation experiment. Environ Int 25:83–95. doi: 10.1016/S0160-4120(98)00098-1 CrossRefGoogle Scholar
  54. Tukey JW (1949) Comparing individual means in the analysis of variance. Biometrics 5:99–114. doi: 10.2307/3001913 CrossRefGoogle Scholar
  55. Wickham H (2009) ggplot2. Elegant graphics for data analysis. Springer, New York. doi: 10.1007/978-0-387-98141-3 Google Scholar
  56. Wordell-Dietrich P, Don A, Helfrich M (2016) Controlling factors for the stability of subsoil carbon in a Dystric Cambisol. Geoderma. doi: 10.1016/j.geoderma.2016.08.023 Google Scholar
  57. Zsolnay A (1996) Dissolved humus in soil waters. In: Piccolo A (ed) Humic substances in terrestrial ecosystems. Elsevier, Amsterdam, pp 171–224. doi: 10.1016/B978-044481516-3/50005-0 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Timo Leinemann
    • 1
    Email author
  • R. Mikutta
    • 2
  • K. Kalbitz
    • 3
  • F. Schaarschmidt
    • 4
  • G. Guggenberger
    • 1
  1. 1.Institute of Soil ScienceLeibniz Universität HannoverHannoverGermany
  2. 2.Soil Science and Soil ProtectionMartin Luther University Halle-WittenbergHalle (Saale)Germany
  3. 3.Institute of Soil Science and Site EcologyTechnische Universität DresdenTharandtGermany
  4. 4.Institute of BiostatisticsLeibniz Universität HannoverHannoverGermany

Personalised recommendations