, Volume 130, Issue 1–2, pp 1–12 | Cite as

The energetic and chemical signatures of persistent soil organic matter

  • Pierre Barré
  • Alain F. Plante
  • Lauric Cécillon
  • Suzanne Lutfalla
  • François Baudin
  • Sylvain Bernard
  • Bent T. Christensen
  • Thomas Eglin
  • Jose M. Fernandez
  • Sabine Houot
  • Thomas Kätterer
  • Corentin Le Guillou
  • Andy Macdonald
  • Folkert van Oort
  • Claire Chenu
Biogeochemistry Letters


A large fraction of soil organic matter (OM) resists decomposition over decades to centuries as indicated by long radiocarbon residence times, but the mechanisms responsible for the long-term (multi-decadal) persistence are debated. The current lack of mechanistic understanding limits our ability to accurately predict soil OM stock evolution under climate and land-use changes. Using a unique set of historic soil samples from five long-term (27–79 years) bare fallow experiments, we demonstrate that despite wide pedo-climatic diversity, persistent OM shows specific energetic signatures, but no uniform chemical composition. From an energetic point of view, thermal analyses revealed that combustion of persistent OM occurred at higher temperature and provided less energy than combustion of more labile OM. In terms of chemical composition, persistent OM was H-depleted compared to OM present at the start of bare fallow, but spectroscopic analyses of OM functional groups did not reflect a consistent chemical composition of OM across sites, nor substantial modifications with bare fallow duration. The low energy content of persistent OM may be attributed to a combination of reduced content of energetic C–H bonds or stronger interactions between OM and the mineral matrix. Soil microorganisms thus appear to preferentially mineralize high-energy OM, leaving behind material with low energy content. This study provides the first direct link between long-term persistence of OM in soil and the energetic barriers experienced by the decomposer community.


Carbon cycling Long-term bare fallow Rock–Eval 6 NEXAFS TG-DSC 



The INSU EC2CO program, ADEME and the ESF (MOLTER program) are acknowledged for financial support. We thank Rothamsted Research and the Lawes Agricultural Trust for access to archived samples and the BBSRC for support under the Institute National Capabilities programme grant (BBS/E/C/00005189). Related information and data can be found in the electronic Rothamsted Archive ( The Danish contribution was financially supported by The Ministry of Food, Agriculture and Fisheries. NEXAFS data were acquired at the beamline11ID-1 at the CLS, which is supported by the NSERC, the CIHR, the NRC and the University of Saskatchewan. Special thanks go to Tom Regier for his expert support on the SGM-beamline at CLS. We also thank the reviewers for their helpful comments.

Supplementary material

10533_2016_246_MOESM1_ESM.docx (529 kb)
Supplementary material 1 (DOCX 529 kb)


  1. Bahri H, Dignac MF, Rumpel C, Rasse DP, Chenu C, Mariotti A (2006) Lignin turnover kinetics in an agricultural soil is monomer specific. Soil Biol Biochem 38(7):1977–1988CrossRefGoogle Scholar
  2. Balabane M, Plante AF (2004) Aggregation and carbon storage in silty soil using physical fractionation techniques. Eur J Soil Sci 55(2):415–427CrossRefGoogle Scholar
  3. Baldock JA, Skjemstad JO (2000) Role of the soil matrix and minerals in protecting natural organic materials against biological attack. Org Geochem 31(7–8):697–710CrossRefGoogle Scholar
  4. Barré P, Eglin T, Christensen BT, Ciais P, Houot S, Kätterer T, van Oort F, Peylin P, Poulton PR, Romanenkov V, Chenu C (2010) Quantifying and isolating stable soil organic carbon using long-term bare fallow experiments. Biogeosciences 7(11):3839–3850CrossRefGoogle Scholar
  5. Beleites C, Sergo V (2014) hyperSpec: a package to handle hyperspectral data sets in R. R package version 0.98-20140523. InGoogle Scholar
  6. Bernard S, Horsfield B, Schulz HM, Wirth R, Schreiber A, Sherwood N (2012) Geochemical evolution of organic-rich shales with increasing maturity: a STXM and TEM study of the Posidonia Shale (Lower Toarcian, northern Germany). Mar Petrol Geol 31(1):70–89CrossRefGoogle Scholar
  7. Bloemberg TG, Gerretzen J, Wouters HJP, Gloerich J, van Dael M, Wessels HJCT, van den Heuvel LP, Eilers PHC, Buydens LMC, Wehrens R (2010) Improved parametric time warping for proteomics. Chemometr Intell Lab Syst 104(1):65–74CrossRefGoogle Scholar
  8. Braun A, Huggins FE, Kelly KE, Mun BS, Ehrlich SN, Huffman GP (2006) Impact of ferrocene on the structure of diesel exhaust soot as probed with wide-angle X-ray scattering and C(1 s) NEXAFS spectroscopy. Carbon 44(14):2904–2911CrossRefGoogle Scholar
  9. Carravetta V, Polzonetti G, Iucci G, Russo MV, Paolucci G, Barnaba M (1998) High resolution NEXAFS spectroscopy study of gas-phase phenylacetylene: experiment and theory. Chem Phys Lett 288(1):37–46CrossRefGoogle Scholar
  10. Carrie J, Sanei H, Stern G (2012) Standardisation of Rock-Eval pyrolysis for the analysis of recent sediments and soils. Org Geochem 46:38–53CrossRefGoogle Scholar
  11. Chessel D, Dufour AB, Thioulouse J (2004) The ade4 package - I: One-table methods. In: R News. vol 1. p 5–10Google Scholar
  12. Conant RT, Drijber RA, Haddix ML, Parton WJ, Paul EA, Plante AF, Six J, Steinweg JM (2008) Sensitivity of organic matter decomposition to warming varies with its quality. Glob Change Biol 14:868–877CrossRefGoogle Scholar
  13. Craine JM, Fierer N, McLauchlan KK (2010) Widespread coupling between the rate and temperature sensitivity of organic matter decay. Nat Geosci 3(12):854–857CrossRefGoogle Scholar
  14. Currie WS (2003) Relationships between carbon turnover and bioavailable energy fluxes in two temperate forest soils. Glob Change Biol 9(6):919–929CrossRefGoogle Scholar
  15. De la Rosa JM, González-Pérez JA, González-Vázquez R, Knicker H, López-Capel E, Manning DAC, González-Vila FJ (2008) Use of pyrolysis/GC-MS combined with thermal analysis to monitor C and N changes in soil organic matter from a mediterranean fire affected forest. Catena 74(3):296–303CrossRefGoogle Scholar
  16. Disnar JR, Guillet B, Keravis D, Di-Giovanni C, Sebag D (2003) Soil organic matter (SOM) characterization by Rock-Eval pyrolysis: scope and limitations. Org Geochem 34(3):327–343CrossRefGoogle Scholar
  17. Doetterl S, Stevens A, Six J, Merckx R, Van Oost K, Pinto MC, Casanova-Katny A, Munoz C, Boudin M, Venegas EZ, Boeckx P (2015) Soil carbon storage controlled by interactions between geochemistry and climate. Nat Geosci 8(10):780–783CrossRefGoogle Scholar
  18. Dungait JAJ, Hopkins DW, Gregory AS, Whitmore AP (2012) Soil organic matter turnover is governed by accessibility not recalcitrance. Glob Change Biol 18(6):1781–1796CrossRefGoogle Scholar
  19. Espitalié J, Deroo G, Marquis F (1985) Rock-Eval pyrolysis and its application 2. Rev De L Inst Fr Du Pet 40(6):755–784CrossRefGoogle Scholar
  20. Feng W, Plante AF, Aufdenkampe AK, Six J (2014) Soil organic matter stability in organo-mineral complexes as a function of increasing C loading. Soil Biol Biochem 69:398–405CrossRefGoogle Scholar
  21. Fernández JM, Plante AF, Leifeld J, Rasmussen C (2011) Methodological considerations for using thermal analysis in the characterization of soil organic matter. J Therm Anal Calorim 104(1):389–398CrossRefGoogle Scholar
  22. Fernández JM, Peltre C, Craine JM, Plante AF (2012) Improved characterization of soil organic matter by thermal analysis using CO2/H2O evolved gas analysis. Environ Sci Technol 46(16):8921–8927CrossRefGoogle Scholar
  23. Fontaine S, Barot S, Barré P, Bdioui N, Mary B, Rumpel C (2007) Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450(7167):277–280CrossRefGoogle Scholar
  24. Geyer KM, Kyker-Snowman E, Grandy AS, Frey SD (2016) Microbial carbon use efficiency: accounting for population, community, and ecosystem-scale controls over the fate of metabolized organic matter. Biogeochemistry 127(2):173–188CrossRefGoogle Scholar
  25. Gleixner G, Poirier N, Bol R, Balesdent J (2002) Molecular dynamics of organic matter in a cultivated soil. Org Geochem 33(3):357–366CrossRefGoogle Scholar
  26. Gregorich EG, Gillespie AW, Beare MH, Curtin D, Sanei H, Yanni SF (2015) Evaluating biodegradability of soil organic matter by its thermal stability and chemical composition. Soil Biol Biochem 91:182–191CrossRefGoogle Scholar
  27. Guenet B, Juarez S, Bardoux G, Abbadie L, Chenu C (2012) Evidence that stable C is as vulnerable to priming effect as is more labile C in soil. Soil Biol Biochem 52:43–48CrossRefGoogle Scholar
  28. Herrmann AM, Bolscher T (2015) Simultaneous screening of microbial energetics and CO2 respiration in soil samples from different ecosystems. Soil Biol Biochem 83:88–92CrossRefGoogle Scholar
  29. Herrmann AM, Coucheney E, Nunan N (2014) Isothermal microcalorimetry provides new insight into terrestrial carbon cycling. Environ Sci Technol 48(8):4344–4352CrossRefGoogle Scholar
  30. Kiem R, Kögel-Knabner I (2003) Contribution of lignin and polysaccharides to the refractory carbon pool in C-depleted arable soils. Soil Biol Biochem 35:101–118CrossRefGoogle Scholar
  31. Kleber M (2010) What is recalcitrant soil organic matter? Environ Chem 7(4):320–332CrossRefGoogle Scholar
  32. LaRowe DE, Van Cappellen P (2011) Degradation of natural organic matter: a thermodynamic analysis. Geochim Cosmochim Ac 75(8):2030–2042CrossRefGoogle Scholar
  33. Le Guillou C, Bernard S, Brearley AJ, Remusat L (2014) Evolution of organic matter in Orgueil, Murchison and Renazzo during parent body aqueous alteration: in situ investigations. Geochim Cosmochim Ac 131:368–392CrossRefGoogle Scholar
  34. Lefèvre R, Barré P, Moyano FE, Christensen BT, Bardoux G, Eglin T, Girardin C, Houot S, Katterer T, van Oort F, Chenu C (2014) Higher temperature sensitivity for stable than for labile soil organic carbon—Evidence from incubations of long- term bare fallow soils. Glob Change Biol 20(2):633–640CrossRefGoogle Scholar
  35. Lehmann J, Kleber M (2015) The contentious nature of soil organic matter. Nature 528(7580):60–68CrossRefGoogle Scholar
  36. Leifeld J, von Lützow M (2014) Chemical and microbial activation energies of soil organic matter decomposition. Biol Fertil Soils 50(1):147–153CrossRefGoogle Scholar
  37. Lopez-Capel E, Sohi SP, Gaunt JL, Manning DAC (2005) Use of thermogravimetry-differential scanning calorimetry to characterize modelable soil organic matter fractions. Soil Sci Soc Am J 69(1):136–140Google Scholar
  38. Lutfalla S, Chenu C, Barre P (2014) Are chemical oxidation methods relevant to isolate a soil pool of centennial carbon? Biogeochemistry 118(1–3):135–139CrossRefGoogle Scholar
  39. Menichetti L, Houot S, van Oort F, Katterer T, Christensen BT, Chenu C, Barré P, Vasilyeva NA, Ekblad A (2015) Increase in soil stable carbon isotope ratio relates to loss of organic carbon: results from five long-term bare fallow experiments. Oecologia 177(3):811–821CrossRefGoogle Scholar
  40. Plante AF, Chenu C, Balabane M, Mariotti A, Righi D (2004) Peroxide oxidation of clay-associated organic matter in a cultivation chronosequence. Eur J Soil Sci 55(3):471–478CrossRefGoogle Scholar
  41. Plante AF, Conant RT, Paul EA, Paustian K, Six J (2006) Acid hydrolysis of easily dispersed and microaggregate-derived silt- and clay-sized fractions to isolate resistant soil organic matter. Eur J Soil Sci 57(4):456–467CrossRefGoogle Scholar
  42. Plante AF, Fernández JM, Leifeld J (2009) Application of thermal analysis techniques in soil science. Geoderma 153(1–2):1–10CrossRefGoogle Scholar
  43. Plante AF, Fernández JM, Haddix ML, Steinweg JM, Conant RT (2011) Biological, chemical and thermal indices of soil organic matter stability in four grassland soils. Soil Biol Biochem 43(5):1051–1058CrossRefGoogle Scholar
  44. Puget P, Chenu C, Balesdent J (2000) Dynamics of soil organic matter associated with particle-size fractions of water-stable aggregates. Eur J Soil Sci 51:595–605CrossRefGoogle Scholar
  45. Purton K, Pennock D, Leinweber P, Walley F (2015) Will changes in climate and land use affect soil organic matter composition? Evidence from an ecotonal climosequence. Geoderma 253:48–60CrossRefGoogle Scholar
  46. R Core Team (2013) R: A language and environment for statistical computing. In: R foundation for statistical computing, Vienna, AustriaGoogle Scholar
  47. Reeves JB (2012) Mid-infrared spectral interpretation of soils: is it practical or accurate? Geoderma 189:508–513CrossRefGoogle Scholar
  48. Regier T, Krochak J, Sham TK, Hu YF, Thompson J, Blyth RIR (2007) Performance and capabilities of the Canadian Dragon: the SGM beamline at the Canadian Light Source. Nucl Instrum Meth A 582(1):93–95CrossRefGoogle Scholar
  49. Rovira P, Kurz-Besson C, Couteaux MM, Vallejo VR (2008) Changes in litter properties during decomposition: a study by differential thermogravimetry and scanning calorimetry. Soil Biol Biochem 40(1):172–185CrossRefGoogle Scholar
  50. Rühlmann J (1999) A new approach to estimating the pool of stable organic matter in soil using data from long-term field experiments. Plant Soil 213(1–2):149–160CrossRefGoogle Scholar
  51. Saenger A, Cecillon L, Sebag D, Brun JJ (2013) Soil organic carbon quantity, chemistry and thermal stability in a mountainous landscape: a Rock-Eval pyrolysis survey. Org Geochem 54:101–114CrossRefGoogle Scholar
  52. Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kogel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478(7367):49–56CrossRefGoogle Scholar
  53. Sebag D, Disnar JR, Guillet B, Di Giovanni C, Verrecchia EP, Durand A (2006) Monitoring organic matter dynamics in soil profiles by ‘Rock-Eval pyrolysis’: bulk characterization and quantification of degradation. Eur J Soil Sci 57(3):344–355CrossRefGoogle Scholar
  54. Smith JU, Smith P, Monaghan R, MacDonald J (2002) When is a measured soil organic matter fraction equivalent to a model pool? Eur J Soil Sci 53(3):405–416CrossRefGoogle Scholar
  55. Stöhr J (1992) NEXAFS Spectroscopy. Springer, BerlinCrossRefGoogle Scholar
  56. Swift MJ, Heal OW, Anderson JM (1979) Decomposition in Terrestrial Ecosystems. Blackwell Scientific Publications, OxfordGoogle Scholar
  57. Tambach TJ, Veld H, Griffioen J (2009) Influence of HCl/HF treatment on organic matter in aquifer sediments: a Rock-Eval pyrolysis study. Appl Geochem 24(11):2144–2151CrossRefGoogle Scholar
  58. Trumbore S (2000) Age of soil organic matter and soil respiration: radiocarbon constraints on belowground C dynamics. Ecol Appl 10(2):399–411CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Pierre Barré
    • 1
  • Alain F. Plante
    • 2
  • Lauric Cécillon
    • 3
  • Suzanne Lutfalla
    • 1
    • 4
  • François Baudin
    • 5
  • Sylvain Bernard
    • 6
  • Bent T. Christensen
    • 7
  • Thomas Eglin
    • 8
  • Jose M. Fernandez
    • 2
  • Sabine Houot
    • 4
  • Thomas Kätterer
    • 9
  • Corentin Le Guillou
    • 10
  • Andy Macdonald
    • 11
  • Folkert van Oort
    • 4
  • Claire Chenu
    • 4
  1. 1.Laboratoire de Géologie de l’ENSPSL Research University – CNRS UMR8538ParisFrance
  2. 2.Earth and Environmental ScienceUniversity of PennsylvaniaPhiladelphiaUSA
  3. 3.UR EMGR, Université Grenoble Alpes, IrsteaSt-Martin-d’HèresFrance
  4. 4.UMR ECOSYS, INRA - AgroParisTech – Université Paris-SaclayThiverval GrignonFrance
  5. 5.Institut des Sciences de la Terre de ParisSorbonne Université-UPMC-Univ Paris 06ParisFrance
  6. 6.IMPMC, UMR7590, CNRS, MNHNParisFrance
  7. 7.Department of AgroecologyAarhus UniversityTjeleDenmark
  8. 8.Direction Productions et Energies Durables – Service Agriculture et Forêt, ADEMEAngersFrance
  9. 9.Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
  10. 10.Unité matériaux et transformation (UMET), Université Lille1, CNRS - UMR8207Villeneuve d’AscqFrance
  11. 11.Department of Sustainable Soils and Grassland SystemsRothamsted ResearchHarpendenUK

Personalised recommendations