Advertisement

Biogeochemistry

, Volume 128, Issue 1–2, pp 19–34 | Cite as

Effect of ocean warming and acidification on the Fe(II) oxidation rate in oligotrophic and eutrophic natural waters

  • Guillermo Samperio-Ramos
  • J. Magdalena Santana Casiano
  • Melchor González Dávila
Article

Abstract

The oxidation rates (k app ) of nanomolar levels of Fe(II) were studied in seawater enriched with nutrients (SWEN) in air saturated conditions. The nutrient effect (nitrate, phosphate and silicate), on the oxidation of Fe(II), was evaluated as a function of pH (7.2–8.2), temperature (5–35 °C) and salinity (10–37.09). The oxidation of Fe(II) was faster in the presence of nutrient with the change in the Fe(II) oxidation rates (Δlogk app ) more intensive at higher temperatures over the entire pH range studied. A kinetic model that considers the interactions of Fe(II) with the major ions in seawater, including phosphate and silicate, was applied to the experimental results in order to describe the effect of ocean warming and acidification in the speciation of Fe(II) and to compute the fractional contribution of each Fe(II)-specie to the overall oxidation rate. The inorganic speciation of Fe(II) was controlled largely by pH, either in SW or in SWEN. A greater presence of Fe-nutrient reactive species (FeH3SiO4 + and FePO4 ) in SWEN at higher temperatures explained the changes in the oxidation process. The individual oxidation rates by oxygen, for the Fe(II) most kinetically active species (Fe2+, FeOH+, Fe(OH)2, FeCO3(OH), FeCO3, Fe(CO3) 2 2− , FeH3SiO3 +, FePO4 ), were fitted as a function of the temperature.

Keywords

Oxidation Fe(II) Nutrients pH Temperature 

Notes

Acknowledgments

This study received supported from ECOFEMA Project (CTM2010-19517-mar) and EACFe Project (CTM2014-52342-P) of the Ministerio de Economía y Competitividad of Spain. G. S. R. participation was supported by the Grant BES-2011-051448 of the Ministerio de Economía y Competitividad. The authors thank Dr. Javier Aristegui for the measurements of dissolved organic carbon.

Supplementary material

10533_2016_192_MOESM1_ESM.docx (2 mb)
Supplementary material 1 (DOCX 1997 kb)

References

  1. Achterberg EP, Holland TW, Bowie AR et al (2001) Determination of iron in seawater. Anal Chim Acta 442:1–14. doi: 10.1016/S0003-2670(01)01091-1 CrossRefGoogle Scholar
  2. Arístegui J, Duarte CM, Reche I, Gómez-Pinchetti JL (2014) Krill excretion boosts microbial activity in the Southern Ocean. PLoS One 9:e89391. doi: 10.1371/journal.pone.0089391 CrossRefGoogle Scholar
  3. Arrhenius SA (1889) Über die Dissociationswärme und den Einflusß der Temperatur auf den Dissociationsgrad der Elektrolyte”. Z. Physik. Chem. 4:96–116Google Scholar
  4. Barbeau K, Rue EL, Bruland KW, Butler A (2001) Photochemical cycling of iron in the surface ocean mediated by microbial iron(III)-binding ligands. Nature 413:409–413. doi: 10.1038/35096545 CrossRefGoogle Scholar
  5. Baron JS, Hall EK, Nolan BT et al (2013) The interactive effects of excess reactive nitrogen and climate change on aquatic ecosystems and water resources of the United States. Biogeochemistry 114:71–92. doi: 10.1007/s10533-012-9788-y CrossRefGoogle Scholar
  6. Behrenfeld MJ, Milligan AJ (2011) Photophysiological expressions of iron stress in phytoplankton. Ann Rev Mar Sci 5:217–246. doi: 10.1146/annurev-marine-121211-172356 CrossRefGoogle Scholar
  7. Benson BB, Krause D (1984) The concentration and isotopic fractionation of oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere. Limnol Oceanogr 29:620–632. doi: 10.4319/lo.1984.29.3.0620 CrossRefGoogle Scholar
  8. Borer P, Sulzberger B, Hug SJ et al (2009) Photoreductive dissolution of iron(III) (hydr)oxides in the absence and presence of organic ligands: experimental studies and kinetic modeling. Environ Sci Technol 43:1864–1870CrossRefGoogle Scholar
  9. Boyd PW, Ellwood MJ (2010) The biogeochemical cycle of iron in the ocean. Nat Geosci 3:675–682. doi: 10.1038/ngeo964 CrossRefGoogle Scholar
  10. Boyd PW, Jickells T, Law CS et al (2007) Mesoscale iron enrichment experiments 1993-2005: synthesis and future directions. Science 315:612–617. doi: 10.1126/science.1131669 CrossRefGoogle Scholar
  11. Breitbarth E, Bellerby RJ, Neill CC et al (2010) Ocean acidification affects iron speciation in seawater. Biogeosci Discuss 7:1065–1073CrossRefGoogle Scholar
  12. Byrne RH, Kump LR, Cantrell KJ (1988) The influence of temperature and pH on trace metal speciation in seawater. Mar Chem 25:163–181. doi: 10.1016/0304-4203(88)90062-X CrossRefGoogle Scholar
  13. Byrne RH, Mecking S, Feely RA, Liu X (2010) Direct observations of basin-wide acidification of the North Pacific Ocean. Geophys Res Lett 37:1–5. doi: 10.1029/2009GL040999 CrossRefGoogle Scholar
  14. Cai W-J, Hu X, Huang W-J et al (2011) Acidification of subsurface coastal waters enhanced by eutrophication. Nat Geosci 4:766–770CrossRefGoogle Scholar
  15. Chen M, Wang WX (2008) Accelerated uptake by phytoplankton of iron bound to humic acids. Aquat Biol 3:155–166. doi: 10.3354/ab00064 CrossRefGoogle Scholar
  16. Cloern JE (2001) Our evolving conceptual model of the coastal\reutrophication problem. Mar Ecol Prog Ser 210:223–253. doi: 10.3354/meps210223 CrossRefGoogle Scholar
  17. Conley DJ, Paerl HW, Howarth RW et al (2009) Controlling eutrophication: nitrogen and phosphorus. Science 323:1014–1015. doi: 10.1126/science.1167755 CrossRefGoogle Scholar
  18. Dore JE, Lukas R, Sadler DW et al (2009) Physical and biogeochemical modulation of ocean acidification in the central North Pacific. Proc Natl Acad Sci 106:12235–12240CrossRefGoogle Scholar
  19. Dutkiewicz S, Follows MJ, Parekh P (2005) Interactions of the iron and phosphorus cycles: a three-dimensional model study. Global Biogeochem Cycles. doi: 10.1029/2004GB002342 Google Scholar
  20. Emmenegger L, King DW, Sigg L, Sulzberger B (1998) Oxidation kinetics of Fe(II) in a eutrophic Swiss lake. Environ Sci Technol 32:2990–2996CrossRefGoogle Scholar
  21. Eyring H (1935) The activated complex in chemical reactions. J Chem Phys 3:107–115. doi: 10.1063/1.1749604 CrossRefGoogle Scholar
  22. Feely RA, Alin SR, Newton J et al (2010) The combined effects of ocean acidification, mixing, and respiration on pH and carbonate saturation in an urbanized estuary. Estuar Coast Shelf Sci 88:442–449. doi: 10.1016/j.ecss.2010.05.004 CrossRefGoogle Scholar
  23. Garg S, Rose AL, Waite TD (2011) Photochemical production of superoxide and hydrogen peroxide from natural organic matter. Geochim Cosmochim Acta 75:4310–4320. doi: 10.1016/j.gca.2011.05.014 CrossRefGoogle Scholar
  24. Garmendia M, Revilla M, Bald J et al (2011) Phytoplankton communities and biomass size structure (fractionated chlorophyll “a”), along trophic gradients of the Basque coast (northern Spain). Biogeochemistry 106:243–263. doi: 10.1007/s10533-010-9445-2 CrossRefGoogle Scholar
  25. Gledhill M, Buck KN (2012) The organic complexation of iron in the marine environment: a review. Front Microbiol 3:69. doi: 10.3389/fmicb.2012.00069 Google Scholar
  26. González AG, Santana-Casiano JM, Pérez N, González-Dávila M (2010) Oxidation of Fe(II) in natural waters at high nutrient concentrations. Environ Sci Technol 44:8095–8101. doi: 10.1021/es1009218 CrossRefGoogle Scholar
  27. González AG, Santana-Casiano JM, González-Dávila M et al (2014) Effect of Dunaliella tertiolecta organic exudates on the Fe(II) oxidation kinetics in seawater. Environ Sci Technol 48:7933–7941. doi: 10.1021/es5013092 CrossRefGoogle Scholar
  28. González-Davila M, Santana-Casiano JM, Millero FJ (2005) Oxidation of iron (II) nanomolar with H2O2 in seawater. Geochim Cosmochim Acta 69:83–93. doi: 10.1016/j.gca.2004.05.043 CrossRefGoogle Scholar
  29. González-Dávila M, Santana-casiano JM, Rueda M-J et al (2003) Seasonal and interannual variability of sea-surface carbon dioxide species at the European Station for Time Series in the Ocean at the Canary Islands (ESTOC) between 1996 and 2000. Global Biogeochem Cycles. doi: 10.1029/2002GB001993 Google Scholar
  30. González-Dávila M, Santana-Casiano JM, de Armas D et al (2006a) The influence of island generated eddies on the carbon dioxide system, south of the Canary Islands. Mar Chem 99:177–190. doi: 10.1016/j.marchem.2005.11.004 CrossRefGoogle Scholar
  31. González-Dávila M, Santana-Casiano JM, Millero FJ (2006b) Competition between O2 and H2O2 in the oxidation of Fe(II) in natural waters. J Solut Chem 35:95–111. doi: 10.1007/s10953-006-8942-3 CrossRefGoogle Scholar
  32. Guenther M, Araújo M, Flores-Montes M et al (2015) Eutrophication effects on phytoplankton size-fractioned biomass and production at a tropical estuary. Mar Pollut Bull 91:537–547. doi: 10.1016/j.marpolbul.2014.09.048 CrossRefGoogle Scholar
  33. Guillard RRL (1975) Cultures of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley MH (eds) Culture of marine invertebrates animals. Plenum Publishing Cop, New YorkGoogle Scholar
  34. Haber F, Weiss J (1932) Über die Katalyse des Hydroperoxydes. Naturwissenschaften 20:948–950. doi: 10.1007/BF01504715 CrossRefGoogle Scholar
  35. Hansell DA, Carlson CA, Repeta DJ, Schlitzer R (2009) Dissolved organic matter in the ocean. A controversy stimulates new insights. Oceanography 22:202–211CrossRefGoogle Scholar
  36. Hansen HP (1999) In: Grasshoff K, Kremling K, Ehrhardt M (eds) Methods of seawater analysis. Wiley-VCH, BerlinGoogle Scholar
  37. Haroun RJ (1994) Environmental description of an artificial reef site in Gran Canaria (Canary Islands, Spain) prior to reef placement. Bull Mar Sci 55:932–938Google Scholar
  38. Hassler CS, Schoemann V, Nichols CM et al (2011) Saccharides enhance iron bioavailability to Southern Ocean phytoplankton. Proc Natl Acad Sci 108:1076–1081. doi: 10.1073/pnas.1010963108 CrossRefGoogle Scholar
  39. Hoffmann L, Breitbarth E, Boyd P, Hunter K (2012) Influence of ocean warming and acidification on trace metal biogeochemistry. Mar Ecol Prog Ser 470:191–205. doi: 10.3354/meps10082 CrossRefGoogle Scholar
  40. Hofmann GE, Smith JE, Johnson KS et al (2011) High-frequency dynamics of ocean pH: a multi-ecosystem comparison. PLoS ONE 6:e28983. doi: 10.1371/journal.pone.0028983 CrossRefGoogle Scholar
  41. Hu C, Muller-Karger FE, Swarzenski PW (2006) Hurricanes, submarine groundwater discharge, and Florida’s red tides. Geophys Res Lett 33:L11601. doi: 10.1029/2005GL025449 CrossRefGoogle Scholar
  42. Hutchins DA, Witter AE, Butler A, Luther GW (1999) Competition among marine phytoplankton for different chelated iron species. Nature 400:858–861. doi: 10.1038/23680 CrossRefGoogle Scholar
  43. IPCC (2014) Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. In: Pachauri RK, Meyer LA (ed) IPCC, GenevaGoogle Scholar
  44. Kieber DJ, Miller GW, Neale PJ, Mopper K (2014) Wavelength and temperature-dependent apparent quantum yields for photochemical formation of hydrogen peroxide in seawater. Environ Sci Process Impacts 16:777–791. doi: 10.1039/C4EM00036F CrossRefGoogle Scholar
  45. King DW (1998) Role of carbonate speciation on the oxidation rate of Fe(II) in aquatic systems. Environ Sci Technol 32:2997–3003. doi: 10.1021/es980206o CrossRefGoogle Scholar
  46. King DW, Farlow R (2000) Role of carbonate speciation on the oxidation of Fe(II) by H2O2. Mar Chem 70:201–209CrossRefGoogle Scholar
  47. King DW, Lounsbury HA, Millero FJ (1995) Rates and mechanism of Fe(II) oxidation at nanomolar total iron concentrations. Environ Sci Technol 29:818–824. doi: 10.1021/es00003a033 CrossRefGoogle Scholar
  48. Kucuksezgin F, Kontas A, Altay O et al (2006) Assessment of marine pollution in Izmir Bay: nutrient, heavy metal and total hydrocarbon concentrations. Environ Int 32:41–51. doi: 10.1016/j.envint.2005.04.007 CrossRefGoogle Scholar
  49. Laruelle GG, Roubeix V, Sferratore A et al (2009) Anthropogenic perturbations of the silicon cycle at the global scale: key role of the land-ocean transition. Global Biogeochem Cycles. doi: 10.1029/2008GB003267 Google Scholar
  50. Lavigne H, Epitalon JM, Gattuso JP (2011) Seacarb: seawater carbonate chemistry with R. R package version 3.0. http://CRAN.R-project.org/package=seacarb
  51. Lee Y-W, Kim G, Lim W-A, Hwang D-W (2010) A relationship between submarine groundwater borne nutrients traced by Ra isotopes and the intensity of dinoflagellate red-tides occurring in the southern sea of Korea. Limnol Oceanogr 55:1–10. doi: 10.4319/lo.2010.55.1.0001 CrossRefGoogle Scholar
  52. Liu X, Millero FJ (2002) The solubility of iron in seawater. Mar Chem 77:43–54. doi: 10.1016/S0304-4203(01)00074-3 CrossRefGoogle Scholar
  53. Maier G, Glegg GA, Tappin AD, Worsfold PJ (2009) The use of monitoring data for identifying factors influencing phytoplankton bloom dynamics in the eutrophic Taw Estuary, SW England. Mar Pollut Bull 58:1007–1015. doi: 10.1016/j.marpolbul.2009.02.014 CrossRefGoogle Scholar
  54. Mao Y, Pham AN, Rose AL, Waite TD (2011) Influence of phosphate on the oxidation kinetics of nanomolar Fe(II) in aqueous solution at circumneutral pH. Geochim Cosmochim Acta 75:4601–4610. doi: 10.1016/j.gca.2011.05.031 CrossRefGoogle Scholar
  55. Martin JH, Fitzwater SE (1988) Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature 331:341–343CrossRefGoogle Scholar
  56. Mendes P (1997) Biochemistry by numbers: simulation of biochemical pathways with Gepasi 3. Trends Biochem Sci 22:361–363. doi: 10.1016/S0968-0004(97)01103-1 CrossRefGoogle Scholar
  57. Miller WL, King DW, Lin J, Kester DR (1995) Photochemical redox cycling of iron in coastal seawater. Mar Chem 50:63–77. doi: 10.1016/0304-4203(95)00027-O CrossRefGoogle Scholar
  58. Millero FJ (1986) The pH of estuarine waters. Limnol Oceanogr 31:839–847. doi: 10.4319/lo.1986.31.4.0839 CrossRefGoogle Scholar
  59. Millero FJ (1987) Estimate of the life time of superoxide in seawater. Geochim Cosmochim Acta 51:351–353. doi: 10.1016/0016-7037(87)90246-8 CrossRefGoogle Scholar
  60. Millero FJ (2006) Chemical oceanography. Taylor and Francis Group, Boca RatonGoogle Scholar
  61. Millero FJ (2009) Effect of ocean acidification on the speciation of metals in seawater. Oceanography 22:72–85CrossRefGoogle Scholar
  62. Millero F, Pierrot D (1998) A chemical equilibrium model for natural waters. Aquat Geochem 4:153–199. doi: 10.1023/A:1009656023546 CrossRefGoogle Scholar
  63. Millero FJ, Sotolongo S, Izaguirre M (1987) The oxidation kinetics of Fe(II) in seawater. Geochim Cosmochim Acta 51:793–801. doi: 10.1016/0016-7037(87)90093-7 CrossRefGoogle Scholar
  64. Moore WS (2010) The effect of submarine groundwater discharge on the ocean. Ann Rev Mar Sci 2:59–88. doi: 10.1146/annurev-marine-120308-081019 CrossRefGoogle Scholar
  65. Morel FMM, Kustka AB, Shaked Y (2008) The role of unchelated Fe in the iron nutrition of phytoplankton. Limnol Oceanogr 53:400–404CrossRefGoogle Scholar
  66. Newton A, Mudge SM (2005) Lagoon-sea exchanges, nutrient dynamics and water quality management of the Ria Formosa (Portugal). Estuar Coast Shelf Sci 62:405–414. doi: 10.1016/j.ecss.2004.09.005 CrossRefGoogle Scholar
  67. Öztürk M, Bizsel N, Steinnes E (2003) Iron speciation in eutrophic and oligotrophic Mediterranean coastal waters; impact of phytoplankton and protozoan blooms on iron distribution. Mar Chem 81:19–36. doi: 10.1016/S0304-4203(02)00137-8 CrossRefGoogle Scholar
  68. Paerl HW, Paul VJ (2012) Climate change: links to global expansion of harmful cyanobacteria. Water Res 46:1349–1363. doi: 10.1016/j.watres.2011.08.002 CrossRefGoogle Scholar
  69. Paytan A, McLaughlin K (2007) The oceanic phosphorus cycle. Chem Rev 107:563–576. doi: 10.1021/cr0503613 CrossRefGoogle Scholar
  70. Pérez FF, Mintrop L, Llinás O et al (2001) Mixing analysis of nutrients, oxygen and inorganic carbon in the Canary Islands region. J Mar Syst 28:183–201. doi: 10.1016/S0924-7963(01)00003-3 CrossRefGoogle Scholar
  71. Rabalais NN, Turner RE, Díaz RJ, Justić D (2009) Global change and eutrophication of coastal waters. ICES J Mar Sci 66:1528–1537. doi: 10.1093/icesjms/fsp047 CrossRefGoogle Scholar
  72. R Development Core Team (2008) Language and environment for statistical computing and graphics. https://www.r-project.org/about.html
  73. Ragueneau O, Schultes S, Bidle K et al (2006) Si and C interactions in the world ocean: Importance of ecological processes and implications for the role of diatoms in the biological pump. Global Biogeochem Cycles. doi: 10.1029/2006GB002688 Google Scholar
  74. Rogelj J, Meinshausen M, Knutti R (2012) Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nat Clim Chang 2:248–253. doi: 10.1038/nclimate1385 CrossRefGoogle Scholar
  75. Rose AL, Waite TD (2002) Kinetic model for Fe(II) oxidation in seawater in the absence and presence of natural organic matter. Environ Sci Technol 36:433–444CrossRefGoogle Scholar
  76. Roy EG, Wells ML, King DW (2008) Persistence of iron(II) in surface waters of the western subarctic Pacific. Limnol Oceanogr 53:89–98CrossRefGoogle Scholar
  77. Santana-Casiano JM, González-Dávila M, Millero FJ (2004) The oxidation of Fe(II) in NaCl–HCO3 and seawater solutions in the presence of phthalate and salicylate ions: a kinetic model. Mar Chem 85:27–40. doi: 10.1016/j.marchem.2003.09.001 CrossRefGoogle Scholar
  78. Santana-Casiano JM, González-Dávila M, Millero FJ (2005) Oxidation of nanomolar levels of Fe(II) with oxygen in natural waters. Environ Sci Technol 39:2073–2079CrossRefGoogle Scholar
  79. Santana-Casiano JM, González-Dávila M, Millero FJ (2006) The role of Fe(II) species on the oxidation of Fe(II) in natural waters in the presence of O2 and H2O2. Mar Chem 99:70–82. doi: 10.1016/j.marchem.2005.03.010 CrossRefGoogle Scholar
  80. Santana-Casiano JM, González-Dávila M, Rueda MJ et al (2007) The interannual variability of oceanic CO2 parameters in the northeast Atlantic subtropical gyre at the ESTOC site. Global Biogeochem Cycles 21:1–16. doi: 10.1029/2006GB002788 CrossRefGoogle Scholar
  81. Santos IR, Burnett WC, Chanton J et al (2008) Nutrient biogeochemistry in a Gulf of Mexico subterranean estuary and groundwater-derived fluxes to the coastal ocean. Limnol Oceanogr 53:705–718. doi: 10.4319/lo.2008.53.2.0705 CrossRefGoogle Scholar
  82. Shaked Y (2008) Iron redox dynamics in the surface waters of the Gulf of Aqaba, Red Sea. Geochim Cosmochim Acta 72:1540–1554. doi: 10.1016/j.gca.2008.01.005 CrossRefGoogle Scholar
  83. Shaked Y, Lis H (2012) Disassembling iron availability to phytoplankton. Front Microbiol 3:1–26. doi: 10.3389/fmicb.2012.00123 CrossRefGoogle Scholar
  84. Shaked Y, Kustka AB, Morel FMM (2005) A general kinetic model for iron acquisition by eukaryotic phytoplankton. Limnol Oceanogr 50:872–882. doi: 10.4319/lo.2005.50.3.0872 CrossRefGoogle Scholar
  85. Shi D, Xu Y, Hopkinson BM, Morel FMM (2010) Effect of ocean acidification on iron availability to marine phytoplankton. Science 327:676–679. doi: 10.1126/science.1183517 CrossRefGoogle Scholar
  86. Struyf E, Conley DJ (2012) Emerging understanding of the ecosystem silica filter. Biogeochemistry 107:9–18. doi: 10.1007/s10533-011-9590-2 CrossRefGoogle Scholar
  87. Tréguer PJ, De La Rocha CL (2013) The world ocean silica cycle. Ann Rev Mar Sci 5:477–501. doi: 10.1146/annurev-marine-121211-172346 CrossRefGoogle Scholar
  88. Verweij W (2013) Chemical Equilibria in Aquatic Systems (CHEAQS-Pro): NIST database 46, Version 8.0Google Scholar
  89. Viollier E, Inglett PW, Hunter K et al (2000) The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters. Appl Geochem 15:785–790. doi: 10.1016/S0883-2927(99)00097-9 CrossRefGoogle Scholar
  90. Voelker BM, Sedlak DL (1995) Iron reduction by photoproduced superoxide in seawater. Mar Chem 50:93–102CrossRefGoogle Scholar
  91. Wallace RB, Baumann H, Grear JS et al (2014) Coastal ocean acidification: the other eutrophication problem. Estuar Coast Shelf Sci 148:1–13. doi: 10.1016/j.ecss.2014.05.027 CrossRefGoogle Scholar
  92. Wang H, Yang Q, Ji F et al (2012) The geochemical characteristics and Fe(II) oxidation kinetics of hydrothermal plumes at the Southwest Indian Ridge. Mar Chem 134–135:29–35. doi: 10.1016/j.marchem.2012.02.009 CrossRefGoogle Scholar
  93. Waterbury RD, Yao W, Byrne RH (1997) Long pathlength absorbance spectroscopy: trace analysis of Fe(II) using a 4.5 m liquid core waveguide. Anal Chim Acta 357:99–102. doi: 10.1016/S0003-2670(97)00530-8 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Instituto de Oceanografía y Cambio GlobalUniversidad de Las Palmas de Gran CanariaLas PalmasSpain

Personalised recommendations