Biogeochemistry

, Volume 127, Issue 2–3, pp 189–198 | Cite as

Alternative nitrogenase activity in the environment and nitrogen cycle implications

  • Xinning Zhang
  • Darcy L. McRose
  • Romain Darnajoux
  • J. P. Bellenger
  • François M. M. Morel
  • Anne M. L. Kraepiel
Biogeochemistry Letters

Abstract

Biological nitrogen fixation, the main natural input of fixed nitrogen into the biosphere, is catalyzed by Mo-, V-, or Fe-only nitrogenase metalloenzymes. Although “alternative” V- and Fe-only nitrogenase genes are found in many environments, the contribution of these isoenzymes to N2 fixation is unknown. Here we present a new method (ISARA, isotopic acetylene reduction assay) that distinguishes canonical Mo and alternative nitrogenase activities based on in vivo 13C fractionation of acetylene reduction to ethylene (13εMo = 13.1–14.7 ‰, 13εV = 7.5–8.8 ‰, 13εFe = 5.8–6.5 ‰). ISARA analyses indicate significant contributions of alternative nitrogen fixation in boreal cyanolichens and salt marshes (~10–40 % acetylene reduction, ~20–55 % N2 fixed). These results affect the quantitative interpretation of natural abundance 15N data or traditional acetylene reduction assays. They also invite a reexamination of the conditions under which the different nitrogenase isozymes are active and suggest significant interactions between the cycles of nitrogen and trace metals.

Keywords

Nitrogen fixation Alternative nitrogenase Trace metals Nitrogen cycle Stable isotopes 

Supplementary material

10533_2016_188_MOESM1_ESM.pdf (840 kb)
Supplementary material 1 (PDF 840 kb)

References

  1. Bellenger J-P, Wichard T, Xu Y, Kraepiel AML (2011) Essential metals for nitrogen fixation in a free-living N2-fixing bacterium: chelation, homeostasis and high use efficiency. Environ Microbiol 13:1395–1411Google Scholar
  2. Bellenger J-P, Xu Y, Zhang X et al (2014) Possible contribution of alternative nitrogenases to nitrogen fixation by asymbiotic N2-fixing bacterial in soils. Soil Biol Biochem 69:413–420CrossRefGoogle Scholar
  3. Bertics VJ, Sohm JA, Magnabosco C et al (2012) Denitrification and nitrogen fixation dynamics in the area surrounding an individual ghost shrimp (Neotrypaea californiensis) burrow system. Appl Environ Microbiol 78:3864–3872CrossRefGoogle Scholar
  4. Bishop PE, Premakumar R, Dean DR et al (1986) Nitrogen fixation by Azotobacter vinelandii strains having deletions in structural genes for nitrogenase. Science 232:92–94CrossRefGoogle Scholar
  5. Boyd ES, Hamilton TL, Peters JW (2011) An alternative path for the evolution of biological nitrogen fixation. Front Microbiol 2:1–6CrossRefGoogle Scholar
  6. Capone DG (1988) Benthic nitrogen fixation. In: Blackburn TH, Sørensen J (eds) Nitrogen cycling in coastal marine environments. Springer, New YorkGoogle Scholar
  7. Chisnell JR, Premakumar R, Bishop PE (1988) Purification of a second alternative nitrogenase from a nifhdk deletion strain of Azotobacter vinelandii. J Bacteriol 170:27–33Google Scholar
  8. Crans DC, Smee JJ, Gaidamauskas E et al (2004) The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. Chem Rev 104:849–902CrossRefGoogle Scholar
  9. Darnajoux R, Constantin J, Miadlikowska J et al (2014) Is vanadium a biometal for boreal cyanolichens? New Phytol 202:765–771CrossRefGoogle Scholar
  10. Desai MS, Brune A (2012) Bacteroidales ectosymbionts of gut flagellates shape the nitrogen-fixing community in dry-wood termites. ISME J 6:1302–1313CrossRefGoogle Scholar
  11. Dilworth MJ, Eady RR, Robson RL et al (1987) Ethane formation from acetylene as a potential test for vanadium nitrogenase in vivo. Nature 327:167–168CrossRefGoogle Scholar
  12. Eady RR (1996) Structure-function relationships of alternative nitrogenases. Chem Rev 96:3013–3030CrossRefGoogle Scholar
  13. Fulweiler R, Brown S, Nixon S et al (2013) Evidence and a conceptual model for the co-occurrence of nitrogen fixation and denitrification in heterotrophic marine sediments. Mar Ecol Prog Ser 482:57–68CrossRefGoogle Scholar
  14. Gruber N, Galloway JN (2008) An earth-system perspective of the global nitrogen cycle. Nature 451:293–296CrossRefGoogle Scholar
  15. Hardy RWF, Holsten RD, Jackson EK et al (1968) Acetylene-ethylene assay for N2 fixation—laboratory and field evaluation. Plant Physiol 43:1185–1207CrossRefGoogle Scholar
  16. Hayes JM (2004) An introduction to isotopic calculation. Oceanographic Institution, Woods HoleGoogle Scholar
  17. Hodkinson BP, Allen JL, Forrest LL et al (2014) Lichen-symbiotic cyanobacteria associated with Peltigera have an alternative vanadium-dependent nitrogen fixation system. Eur J Phycol 49:11–19CrossRefGoogle Scholar
  18. Högberg P (1997) 15N natural abundance in soil-plant systems. New Phytol 137:179–203CrossRefGoogle Scholar
  19. Howarth RW, Marino R (2006) Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: evolving views over three decades. Limnol Oceanogr 51:364–376CrossRefGoogle Scholar
  20. Joerger RD, Loveless TM, Pau RN et al (1990) Nucleotide sequence and mutational analysis of the structural genes for nitrogenase 2 of Azotobacter vinelandii. J Bacteriol 172:3400–3408Google Scholar
  21. Kaminski P, Batut J, Boistard P (1998) A survey of symbiotic nitrogen fixation by Rhizobia. In: Spaink HP, Kondorosi A, Hooykaas PJJ (eds) The Rhizobiaceae. Springer, NetherlandsGoogle Scholar
  22. Oda Y, Samanta SK, Rey FE et al (2005) Functional genomic analysis of three nitrogenase isozymes in the photosynthetic bacterium Rhodopseudomonas palustris. J Bacteriol 187:7784–7794CrossRefGoogle Scholar
  23. Perakis S, Tepley A, Compton J (2015) Disturbance and topography shape nitrogen availability and δ15N over long-term forest succession. Ecosystems 18:1–16CrossRefGoogle Scholar
  24. Perry DA, Oren R, Hart SC (2013) Forest ecosystems. JHU Press, BaltimoreGoogle Scholar
  25. Reed SC, Cleveland CC, Townsend AR (2011) Functional ecology of free-living nitrogen fixation: a contemporary perspective. Annu Rev Ecol Evol Syst 42:489–512CrossRefGoogle Scholar
  26. Robson RL, Eady RR, Richardson TH et al (1986) The alternative nitrogenase of Azotobacter chroococcum is a vanadium enzyme. Nature 322:388–390CrossRefGoogle Scholar
  27. Seitzinger SP, Garber JH (1987) Nitrogen fixation and 15N2 calibration of the acetylene reduction assay in coastal marine sediments. Mar Ecol Prog Ser 37:65–73CrossRefGoogle Scholar
  28. Stüeken EE, Buick R, Guy BM et al (2015) Isotopic evidence for biological nitrogen fixation by molybdenum-nitrogenase from 3.2 Gyr. Nature 520:666–669CrossRefGoogle Scholar
  29. Sullivan BW, Smith WK, Townsend AR et al (2014) Spatially robust estimates of biological nitrogen fixation imply substantial human alteration of the tropical N cycle. Proc Natl Acad Sci USA 111:8101–8106CrossRefGoogle Scholar
  30. Teal JM, Valiela I, Berlo D (1979) Nitrogen fixation by rhizosphere and free-living bacteria in salt marsh sediments. Limnol Oceanogr 24:126–132CrossRefGoogle Scholar
  31. Thiel T (1993) Characterization of genes for an alternative nitrogenase in the cyanobacterium Anabaena variabilis. J Bacteriol 175:6276–6286Google Scholar
  32. Thiel T, Lyons EM, Erker JC et al (1995) A second nitrogenase in vegetative cells of a heterocyst-forming cyanobacterium. Proc Natl Acad Sci USA 92:9358–9362CrossRefGoogle Scholar
  33. Valiela I, Teal JM (1979) The nitrogen budget of a salt marsh ecosystem. Nature 280:652–656CrossRefGoogle Scholar
  34. Vitousek PM, Menge DNL, Reed SC et al (2013) Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems. Phil Trans R Soc B 368:20130119CrossRefGoogle Scholar
  35. Walmsley J, Kennedy C (1991) Temperature-dependent regulation by molybdenum and vanadium of expression of the structural genes encoding 3 nitrogenases in Azotobacter vinelandii. Appl Environ Microbiol 57:622–624Google Scholar
  36. Wilson ST, Böttjer D, Church MJ et al (2012) Comparative assessment of nitrogen fixation methodologies, conducted in the oligotrophic North Pacific Ocean. Appl Environ Microbiol 78:6516–6523CrossRefGoogle Scholar
  37. Zahalak M, Pratte B, Werth KJ et al (2004) Molybdate transport and its effect on nitrogen utilization in the cyanobacterium Anabaena variabilis ATCC 29413. Mol Microbiol 51:539–549CrossRefGoogle Scholar
  38. Zehr JP, Jenkins BD, Short SM et al (2003) Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environ Microbiol 5:539–554CrossRefGoogle Scholar
  39. Zhang X, Sigman DM, Morel FMM et al (2014) Nitrogen isotope fractionation by alternative nitrogenases and past ocean anoxia. Proc Natl Acad Sci USA 111:4782–4787CrossRefGoogle Scholar
  40. Zielke M, Solheim B, Spjelkavik S et al (2005) Nitrogen fixation in the high arctic: role of vegetation and environmental conditions. Arct Antarct Alp Res 37:372–378CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Xinning Zhang
    • 1
  • Darcy L. McRose
    • 1
  • Romain Darnajoux
    • 3
  • J. P. Bellenger
    • 3
  • François M. M. Morel
    • 1
  • Anne M. L. Kraepiel
    • 1
    • 2
  1. 1.Department of GeosciencesPrinceton UniversityPrincetonUSA
  2. 2.Department of ChemistryPrinceton UniversityPrincetonUSA
  3. 3.Department of ChemistrySherbrooke UniversityQuébecCanada

Personalised recommendations