Advertisement

Biogeochemistry

, Volume 126, Issue 3, pp 251–267 | Cite as

The importance of abiotic reactions for nitrous oxide production

  • Xia Zhu-Barker
  • Amanda R. Cavazos
  • Nathaniel E. Ostrom
  • William R. Horwath
  • Jennifer B. GlassEmail author
Synthesis and Emerging Ideas

Abstract

The continuous rise of atmospheric nitrous oxide (N2O) is an environmental issue of global concern. In biogeochemical studies, N2O production is commonly assumed to arise solely from enzymatic reactions in microbes and fungi. However, iron, manganese and organic compounds readily undergo redox reactions with intermediates in the nitrogen cycle that produce N2O abiotically under relevant environmental conditions at circumneutral pH. Although these abiotic N2O production pathways have been known to occur for close to a century, they are often neglected in modern ecological studies. In this Synthesis and Emerging Ideas paper, we highlight the defining characteristics, environmental controls, and isotopic signatures of abiotic reactions between nitrogen cycle intermediates (hydroxylamine, nitric oxide, and nitrite), redox-active metals (iron and manganese) and organic matter (humic and fulvic acids) that can lead to N2O production. We also discuss the emerging idea that abiotic reactions coupled to biotic processes have widespread ecological relevance and encourage consideration of abiotic production mechanisms in future biogeochemical investigations of N2O cycling.

Keywords

Nitrous oxide Iron Manganese Soils Redox Metals Isotopes Site Preference 

Notes

Acknowledgments

We thank Martin Klotz, Lisa Stein, Nicolas Brüggemann, Bess Ward, and Fourth International Conference on Nitrification (ICoN4) participants for helpful discussions. We also thank Timothy A. Doane, G. Philip Robertson, associate editor R. Kelman Wieder, and four anonymous reviewers for thoughtful comments on earlier versions of this manuscript. WRH and XZB acknowledge support provided by the J. G. Boswell Endowed Chair in Soil Science and USDA National Institute of Food and Agriculture (NIFA; Grant Number: 2011-67003-30371). ARC acknowledges support from the NSF Graduate Research Fellowship Program and the Georgia Institute of Technology Goizueta Foundation Fellowship. NEO acknowledges support from the NSF Geobiology and Low Temperature Geochemistry program (Grants 1053432 and 1348935). JBG acknowledges support from NASA Exobiology Grant NNX14AJ87G and a Center for Dark Energy Biosphere Investigations (NSF-CDEBI OCE-0939564) Small Research Grant.

References

  1. Adriano D (1986) Trace elements in the terrestrial environment. Springer, New YorkCrossRefGoogle Scholar
  2. Akiyama H, Tsuruta H (2003) Nitrous oxide, nitric oxide, and nitrogen dioxide fluxes from soils after manure and urea application. J Environ Qual 32(2):423–431CrossRefGoogle Scholar
  3. Aubert H, Pinta M (1980) Trace elements in soils. Elsevier, New YorkGoogle Scholar
  4. Azam F, Muller C, Weiske A, Benckiser G, Ottow J (2002) Nitrification and denitrification as sources of atmospheric nitrous oxide-role of oxidizable carbon and applied nitrogen. Biol Fertil Soils 35(1):54–61CrossRefGoogle Scholar
  5. Babbin AR, Bianchi D, Jayakumar A, Ward BB (2015) Rapid nitrous oxide cycling in the suboxic ocean. Science 348(6239):1127–1129CrossRefGoogle Scholar
  6. Bengtsson G, Fronaeus S, Bengtsson-Kloo L (2002) The kinetics and mechanism of oxidation of hydroxylamine by iron(III). J Chem Soc, Dalton Trans 12:2548–2552CrossRefGoogle Scholar
  7. Bouwman A, Boumans L, Batjes N (2002) Modeling global annual N2O and NO emissions from fertilized fields. Global Biogeochem Cycles 16(4):28-21–28-29Google Scholar
  8. Bray WC, Simpson ME, MacKenzie AA (1919) The volumetric determination of hydroxylamine. J Am Chem Soc 41(9):1363–1378CrossRefGoogle Scholar
  9. Bremner J (1997) Sources of nitrous oxide in soils. Nutr Cycl Agroecosys 49(1–3):7–16CrossRefGoogle Scholar
  10. Bremner J, Blackmer A, Waring S (1980) Formation of nitrous oxide and dinitrogen by chemical decomposition of hydroxylamine in soils. Soil Biol Biochem 12(3):263–269CrossRefGoogle Scholar
  11. Buresh RJ, Moraghan J (1976) Chemical reduction of nitrate by ferrous iron. J Environ Qual 5(3):320–325CrossRefGoogle Scholar
  12. Burns L, Stevens R, Laughlin R (1995) Determination of the simultaneous production and consumption of soil nitrite using 15N. Soil Biol Biochem 27(6):839–844CrossRefGoogle Scholar
  13. Burns L, Stevens R, Laughlin R (1996) Production of nitrite in soil by simultaneous nitrification and denitrification. Soil Biol Biochem 28(4–5):609–616CrossRefGoogle Scholar
  14. Butler JH, Gordon LI (1986a) An improved gas chromatographic method for the measurement of hydroxylamine in marine and fresh waters. Mar Chem 19(3):229–243CrossRefGoogle Scholar
  15. Butler JH, Gordon LI (1986b) Rates of nitrous oxide production in the oxidation of hydroxylamine by iron(III). Inorg Chem 25(25):4573–4577CrossRefGoogle Scholar
  16. Butler JH, Jones RD, Garber JH, Gordon LI (1987) Seasonal distributions and turnover of reduced trace gases and hydroxylamine in Yaquina Bay, Oregon. Geochim Cosmochim Acta 51(3):697–706CrossRefGoogle Scholar
  17. Butler JH, Pequegnat JE, Gordon LI, Jones RD (1988) Cycling of methane, carbon monoxide, nitrous oxide, and hydroxylamine in a meromictic, coastal lagoon. Est Coast Shelf Sci 27(2):181–203CrossRefGoogle Scholar
  18. Carlson HK, Clark IC, Blazewicz SJ, Iavarone AT, Coates JD (2013) Fe(II) oxidation is an innate capability of nitrate-reducing bacteria that involves abiotic and biotic reactions. J Bacteriol 195(14):3260–3268CrossRefGoogle Scholar
  19. Cayuela ML, Sánchez-Monedero MA, Roig A, Hanley K, Enders A, Lehmann J (2013) Biochar and denitrification in soils: when, how much and why does biochar reduce N2O emissions? Sci Rep 3:1732CrossRefGoogle Scholar
  20. Chakraborty A, Picardal F (2013) Induction of nitrate-dependent Fe(II) oxidation by Fe(II) in Dechloromonas sp. strain UWNR4 and Acidovorax sp. strain 2AN. Appl Environ Microbiol 79(2):748–752CrossRefGoogle Scholar
  21. Chalk P, Smith C (1983) Chemodenitrification. In: Freney JR, Simpson JR (eds) Gaseous loss of nitrogen from plant-soil systems. Springer, Dordrecht, pp 65–89CrossRefGoogle Scholar
  22. Chao T-T, Kroontje W (1966) Inorganic nitrogen transformations through the oxidation and reduction of iron. Soil Sci Soc Am J 30(2):193–196CrossRefGoogle Scholar
  23. Clément J-C, Shrestha J, Ehrenfeld JG, Jaffé PR (2005) Ammonium oxidation coupled to dissimilatory reduction of iron under anaerobic conditions in wetland soils. Soil Biol Biochem 37(12):2323–2328CrossRefGoogle Scholar
  24. Coby AJ, Picardal FW (2005) Inhibition of NO3 and NO2 reduction by microbial Fe(III) reduction: evidence of a reaction between NO2 and cell surface-bound Fe2+. Appl Environ Microbiol 71(9):5267–5274CrossRefGoogle Scholar
  25. Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol Mol Biol Rev 60(4):609–640Google Scholar
  26. Cooper D, Picardal F, Schimmelmann A, Coby A (2003) Chemical and biological interactions during nitrate and goethite reduction by Shewanella putrefaciens 200. Appl Environ Microbiol 69(6):3517–3525CrossRefGoogle Scholar
  27. De Bie MJ, Middelburg JJ, Starink M, Laanbroek HJ (2002) Factors controlling nitrous oxide at the microbial community and estuarine scale. Mar Ecol Prog Ser 240:1–9CrossRefGoogle Scholar
  28. Druschel GK, Baker BJ, Gihring TM, Banfield JF (2004) Acid mine drainage biogeochemistry at Iron Mountain, California. Geochem Trans 5(2):13–32CrossRefGoogle Scholar
  29. Firestone M, Davidson E (1989) Microbial basis of NO and N2O production and consumption in soil. In: Andreae M, Schimel D (eds) Life sciences research reports. Wiley, Chichester, pp 7–21Google Scholar
  30. Frame CH, Casciotti K (2010) Biogeochemical controls and isotopic signatures of nitrous oxide production by a marine ammonia-oxidizing bacterium. Biogeosci Discuss 7(2):3019–3059CrossRefGoogle Scholar
  31. Frear D, Burrell R (1955) Spectrophotometric method for determining hydroxylamine reductase activity in higher plants. Anal Chem 27(10):1664–1665CrossRefGoogle Scholar
  32. Freing A, Wallace DWR, Bange HW (2012) Global oceanic production of nitrous oxide. Philos Trans R Soc B 367(1593):1245–1255CrossRefGoogle Scholar
  33. Gebhardt S, Walter S, Nausch G, Bange H (2004) Hydroxylamine (NH2OH) in the Baltic Sea. Biogeosci Discuss 1(1):709–724CrossRefGoogle Scholar
  34. Glass JB, Kretz CB, Ganesh S, Ranjan P, Seston SL, Buck KN, Morton PL, Landing WM, Moffett JW, Giovannoni SJ, Vergin KL, Stewart FJ (2015) Meta-omic signatures of microbial metal and nitrogen cycling in marine oxygen minimum zones. Front Microbiol 6:998CrossRefGoogle Scholar
  35. Glass JB, Stanton CL, Ochoa H, Taillefert M, DiChristina TJ, Klotz MG, Haslun JA, Gandhi H, Ostrom NE (in review) An alternative pathway for nitrous oxide production in the ocean. Nat GeosciGoogle Scholar
  36. Harper WF, Takeuchi Y, Riya S, Hosomi M, Terada A (2015) Novel abiotic reactions increase nitrous oxide production during partial nitrification: modeling and experiments. Chem Eng J 281:1017–1023CrossRefGoogle Scholar
  37. Heil J, Wolf B, Brüggemann N, Emmenegger L, Tuzson B, Vereecken H, Mohn J (2014) Site-specific 15N isotopic signatures of abiotically produced N2O. Geochim Cosmochim Acta 139:72–82CrossRefGoogle Scholar
  38. Heil J, Liu S, Vereecken H, Brüggemann N (2015) Abiotic nitrous oxide production from hydroxylamine in soils and their dependence on soil properties. Soil Biol Biochem 84:107–115CrossRefGoogle Scholar
  39. Huang S, Jaffé P (2015) Characterization of incubation experiments and development of an enrichment culture capable of ammonium oxidation under iron-reducing conditions. Biogeosciences 12(3):769–779CrossRefGoogle Scholar
  40. IPCC (2007) Climate change 2007: mitigation of climate change. Cambridge University Press, CambridgeGoogle Scholar
  41. IPCC (2014) Climate change 2014: mitigiation of climate change. Cambridge University Press, CambridgeGoogle Scholar
  42. Jenni S, Mohn J, Emmenegger L, Udert KM (2012) Temperature dependence and interferences of NO and N2O microelectrodes used in wastewater treatment. Environ Sci Technol 46(4):2257–2266CrossRefGoogle Scholar
  43. Johnson KS, Gordon RM, Coale KH (1997) What controls dissolved iron concentrations in the world ocean? Mar Chem 57(3–4):137–161CrossRefGoogle Scholar
  44. Jones LC, Peters B, Lezama Pacheco JS, Casciotti KL, Fendorf S (2015) Stable isotopes and iron oxide mineral products as markers of chemodenitrification. Environ Sci Technol 49(6):3444–3452CrossRefGoogle Scholar
  45. Jung M-Y, Well R, Min D, Giesemann A, Park S-J, Kim J-G, Kim S-J, Rhee S-K (2014) Isotopic signatures of N2O produced by ammonia-oxidizing archaea from soils. ISME J 8(5):1115–1125CrossRefGoogle Scholar
  46. Kampschreur MJ, Kleerebezem R, de Vet WW, van Loosdrecht M (2011) Reduced iron induced nitric oxide and nitrous oxide emission. Water Res 45(18):5945–5952CrossRefGoogle Scholar
  47. Klüglein N, Kappler A (2013) Abiotic oxidation of Fe(II) by reactive nitrogen species in cultures of the nitrate-reducing Fe(II) oxidizer Acidovorax sp. BoFeN1–questioning the existence of enzymatic Fe(II) oxidation. Geobiology 11(2):180–190CrossRefGoogle Scholar
  48. Kock A, Bange HW (2013) Nitrite removal improves hydroxylamine analysis in aqueous solution by conversion with iron (III). Environ Chem 10(1):64–71CrossRefGoogle Scholar
  49. Lam P, Jensen MM, Kock A, Lettmann KA, Plancherel Y, Lavik G, Bange HW, Kuypers MM (2011) Origin and fate of the secondary nitrite maximum in the Arabian Sea. Biogeosciences 8(1565–1577):375Google Scholar
  50. Latimer (1952) The oxidation states of the elements and their potentials in aqueous solution, 2nd edn. Prentice-Hall, Englewood CliffsGoogle Scholar
  51. Law C (2008) Predicting and monitoring the effects of large-scale ocean iron fertilization on marine trace gas emissions. Mar Ecol Prog Ser 364:283–288CrossRefGoogle Scholar
  52. Law C, Ling R (2001) Nitrous oxide flux and response to increased iron availability in the Antarctic circumpolar current. Deep Sea Res II 48(11):2509–2527CrossRefGoogle Scholar
  53. Learman D, Voelker B, Vazquez-Rodriguez A, Hansel C (2011a) Formation of manganese oxides by bacterially generated superoxide. Nat Geosci 4(2):95–98CrossRefGoogle Scholar
  54. Learman D, Wankel S, Webb S, Martinez N, Madden A, Hansel C (2011b) Coupled biotic–abiotic Mn(II) oxidation pathway mediates the formation and structural evolution of biogenic Mn oxides. Geochem Cosmochim Acta 75(20):6048–6063CrossRefGoogle Scholar
  55. Learman DR, Voelker BM, Madden AS, Hansel CM (2013) Constraints on superoxide mediated formation of manganese oxides. Front Microbiol 4:262CrossRefGoogle Scholar
  56. Li L, Yinghua P, Qitu W, Xiuru Z, Zhengao L (1988) Investigation of amorphous ferric oxide acting as an electron acceptor in the oxidation of NH4 + under anaerobic condition. Acta Pedol Sin 25(2):184–190Google Scholar
  57. Linn D, Doran J (1984) Effect of water filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Sci Soc Am J 48(6):1267–1272CrossRefGoogle Scholar
  58. Liu S, Vereecken H, Brüggemann N (2014) A highly sensitive method for the determination of hydroxylamine in soils. Geoderma 232:117–122CrossRefGoogle Scholar
  59. Lomas MW, Lipschultz F (2006) Forming the primary nitrite maximum: nitrifiers or phytoplankton? Limnol Oceangr 51(5):2453–2467CrossRefGoogle Scholar
  60. Lovley DR (1991) Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol Rev 55(2):259Google Scholar
  61. Ludwig J, Meixner FX, Vogel B, Förstner J (2001) Soil-air exchange of nitric oxide: an overview of processes, environmental factors, and modeling studies. Biogeochemistry 52(3):225–257CrossRefGoogle Scholar
  62. Luther G (2010) The role of one-and two-electron transfer reactions in forming thermodynamically unstable intermediates as barriers in multi-electron redox reactions. Aquat Geochem 16(3):395–420CrossRefGoogle Scholar
  63. Luther G, Popp J (2002) Kinetics of the abiotic reduction of polymeric manganese dioxide by nitrite: an anaerobic nitrification reaction. Aquat Geochem 8(1):15–36CrossRefGoogle Scholar
  64. Luther G, Sundby B, Lewis B, Brendel P, Silverberg N (1997) Interactions of manganese with the nitrogen cycle: alternative pathways to dinitrogen. Geochim Cosmochim Acta 61(19):4043–4052CrossRefGoogle Scholar
  65. Macko S, Ostrom N (1994) Pollution studies using stable isotopes. In: Michener R, Lajtha K (eds) Stable isotopes in ecology and environmental science. Blackwell Scientific, OxfordGoogle Scholar
  66. Madison AS, Tebo BM, Mucci A, Sundby B, Luther GW (2013) Abundant porewater Mn(III) is a major component of the sedimentary redox system. Science 341(6148):875–878CrossRefGoogle Scholar
  67. McKenney D, Lazar C, Findlay W (1990) Kinetics of the nitrite to nitric oxide reaction in peat. Soil Sci Soc Am J 54(1):106–112CrossRefGoogle Scholar
  68. McNamara N, Black H, Beresford N, Parekh N (2003) Effects of acute gamma irradiation on chemical, physical and biological properties of soils. Appl Soil Ecol 24(2):117–132CrossRefGoogle Scholar
  69. Medinets S, Skiba U, Rennenberg H, Butterbach-Bahl K (2015) A review of soil NO transformation: associated processes and possible physiological significance on organisms. Soil Biol Biochem 80:92–117CrossRefGoogle Scholar
  70. Melton ED, Swanner ED, Behrens S, Schmidt C, Kappler A (2014) The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle. Nat Rev Microbiol 12:797–808CrossRefGoogle Scholar
  71. Minami K, Fukushi S (1986) Emission of nitrous oxide from a well-aerated andosol treated with nitrite and hydroxylamine. Soil Sci Plant Nutr 32(2):233–237CrossRefGoogle Scholar
  72. Moffett JW, Goepfert TJ, Naqvi SWA (2007) Reduced iron associated with secondary nitrite maxima in the Arabian Sea. Deep Sea Res 54:1341–1349CrossRefGoogle Scholar
  73. Montzka S, Dlugokencky E, Butler J (2011) Non-CO2 greenhouse gases and climate change. Nature 476(7358):43–50CrossRefGoogle Scholar
  74. Moraghan J, Buresh R (1977) Chemical reduction of nitrite and nitrous oxide by ferrous iron. Soil Sci Soc Am J 41(1):47–50CrossRefGoogle Scholar
  75. Murray A, Kenig F, Fritsen C, McKay C, Cawley K, Edwards R, Kuhn E, McKnight D, Ostrom N, Peng V (2012) Microbial life at −13 °C in the brine of an ice-sealed Antarctic lake. Proc Natl Acad Sci 109(50):20626–20631CrossRefGoogle Scholar
  76. Naqvi S, Bange HW, Farías L, Monteiro P, Scranton M, Zhang J (2010) Marine hypoxia/anoxia as a source of CH4 and N2O. Biogeosciences 7(7):2159–2190CrossRefGoogle Scholar
  77. Nelson D, Bremner J (1969) Factors affecting chemical transformations of nitrite in soils. Soil Biol Biochem 1(3):229–239CrossRefGoogle Scholar
  78. Nelson D, Bremner J (1970a) Gaseous products of nitrite decomposition in soils. Soil Biol Biochem 2(3):203–204CrossRefGoogle Scholar
  79. Nelson D, Bremner J (1970b) Role of soil minerals and metallic cations in nitrite decomposition and chemodenitrification in soils. Soil Biol Biochem 2(1):1–8CrossRefGoogle Scholar
  80. Ostrom NE, Ostrom PH (2012) The isotopomers of nitrous oxide: analytical considerations and application to resolution of microbial production pathways. In: Baskaran M (ed) Handbook of environmental isotope geochemistry. Springer, Dordrecht, pp 453–476CrossRefGoogle Scholar
  81. Ostrom NE, Russ ME, Popp B, Rust TM, Karl DM (2000) Mechanisms of nitrous oxide production in the subtropical North Pacific based on determinations of the isotopic abundances of nitrous oxide and di-oxygen. Chemosphere 2(3):281–290Google Scholar
  82. Ostrom N, Gandhi H, Murray A, Murray T (2015) The enigmatic nitrogen biogeochemistry of the cryoecosystem of Lake Vida, Victoria Valley, Antarctica. Geobiology. In reviewGoogle Scholar
  83. Peters B, Casciotti KL, Samarkin VA, Madigan MT, Schutte CA, Joye SB (2014) Stable isotope analyses of NO2, NO3 and N2O in the hypersaline ponds and soils of the McMurdo Dry Valleys, Antarctica. Geochem Cosmochim Acta 135:87–101CrossRefGoogle Scholar
  84. Picardal F (2012) Abiotic and microbial interactions during anaerobic transformations of Fe(II) and NOx. Front Microbiol 3(112):1–7. doi: 10.3389/fmicb.2012.00112 Google Scholar
  85. Porter LK (1969) Gaseous products produced by anaerobic reaction of sodium nitrite with oxime compounds and oximes synthesized from organic matter. Sol Sci Soc Am J 33(5):696–702CrossRefGoogle Scholar
  86. Priscu J, Christner B, Dore J, Popp B, Casciotti K, Lyons B (2008) Supersaturated N2O in a perennially ice-covered Antarctic lake: molecular and stable isotopic evidence for a biogeochemical relict. Limnol Oceanogr 53(6):2439–2450CrossRefGoogle Scholar
  87. Ravishankara A, Daniel JS, Portmann RW (2009) Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326(5949):123–125CrossRefGoogle Scholar
  88. Robertson G (1987) Nitrous oxide sources in aerobic soils: nitrification, denitrification and other biological processes. Soil Biol Biochem 19(2):187–193CrossRefGoogle Scholar
  89. Rubasinghege G, Spak SN, Stanier CO, Carmichael GR, Grassian VH (2011) Abiotic mechanism for the formation of atmospheric nitrous oxide from ammonium nitrate. Environ Sci Technol 45(7):2691–2697CrossRefGoogle Scholar
  90. Samarkin VA, Madigan MT, Bowles MW, Casciotti KL, Priscu JC, McKay CP, Joye SB (2010) Abiotic nitrous oxide emission from the hypersaline Don Juan Pond in Antarctica. Nat Geosci 3(5):341–344CrossRefGoogle Scholar
  91. Santoro AE, Buchwald C, McIlvin MR, Casciotti KL (2011) Isotopic signature of N2O produced by marine ammonia-oxidizing archaea. Science 333(6047):1282–1285CrossRefGoogle Scholar
  92. Santoro AE, Dupont CL, Richter RA, Craig MT, Carini P, McIlvin MR, Yang Y, Orsi WD, Moran DM, Saito MA (2015) Genomic and proteomic characterization of “Candidatus Nitrosopelagicus brevis”: an ammonia-oxidizing archaeon from the open ocean. Proc Natl Acad Sci USA 112(4):1173–1178CrossRefGoogle Scholar
  93. Schlesinger W (2009) On the fate of anthropogenic nitrogen. Proc Natl Acad Sci USA 106(1):203–208CrossRefGoogle Scholar
  94. Schreiber F, Polerecky L, de Beer D (2008) Nitric oxide microsensor for high spatial resolution measurements in biofilms and sediments. Anal Chem 80(4):1152–1158CrossRefGoogle Scholar
  95. Schreiber F, Loeffler B, Polerecky L, Kuypers MM, De Beer D (2009) Mechanisms of transient nitric oxide and nitrous oxide production in a complex biofilm. ISME J 3(11):1301–1313CrossRefGoogle Scholar
  96. Schreiber F, Wunderlin P, Udert K, Wells G (2012) Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: biological pathways, chemical reactions, and novel technologies. Front Microbiol 3:372CrossRefGoogle Scholar
  97. Schreiber F, Stief P, Kuypers MM, de Beer D (2014) Nitric oxide turnover in permeable river sediment. Limnol Oceanogr 59(4):1310–1320CrossRefGoogle Scholar
  98. Schweiger B, Hansen H, Bange H (2007) A time series of hydroxylamine (NH2OH) in the southwestern Baltic Sea. Geophys Res Lett 34:L24608. doi: 10.1029/2007GL031086 CrossRefGoogle Scholar
  99. Seitzinger S (1988) Denitrification in freshwater and coastal marine ecosystems: ecological and geochemical significance. Limnol Oceanogr 33:702–724CrossRefGoogle Scholar
  100. Shacklette HT, Boerngen JG (1984) Element concentrations in soils and other surficial materials of the conterminous United States. Technical report, US Geological Survey Professional Paper 1270, Washington, DCGoogle Scholar
  101. Shen Q, Ran W, Cao Z (2003) Mechanisms of nitrite accumulation occurring in soil nitrification. Chemosphere 50(6):747–753CrossRefGoogle Scholar
  102. Shrestha J, Rich JJ, Ehrenfeld JG, Jaffe PR (2009) Oxidation of ammonium to nitrite under iron-reducing conditions in wetland soils: laboratory, field demonstrations, and push-pull rate determination. Soil Sci 174(3):156–164CrossRefGoogle Scholar
  103. Skiba U, Ball B (2002) The effect of soil texture and soil drainage on emissions of nitric oxide and nitrous oxide. Soil Use Manag 18(1):56–60CrossRefGoogle Scholar
  104. Skipper H, Westermann D (1973) Comparative effects of propylene oxide, sodium azide, and autoclaving on selected soil properties. Soil Biol Biochem 5(4):409–414CrossRefGoogle Scholar
  105. Smith R, Burns L, Doyle R, Lennox S, Kelso B, Foy R, Stevens R (1997) Free ammonia inhibition of nitrification in river sediments leading to nitrite accumulation. J Environ Qual 26(4):1049–1055CrossRefGoogle Scholar
  106. Sørensen J, Thorling L (1991) Stimulation by lepidocrocite (7-FeOOH) of Fe(II)-dependent nitrite reduction. Geochim Cosmochim Acta 55(5):1289–1294CrossRefGoogle Scholar
  107. Stark J, Firestone M (1995) Mechanisms for soil-moisture effects on activity of nitrifying bacteria. Appl Environ Microbiol 61(1):218–221Google Scholar
  108. Stein LY (2011) Surveying N2O-producing pathways in bacteria. Methods Enzymol 486:131–151CrossRefGoogle Scholar
  109. Stein LY, Yung YL (2003) Production, isotopic composition, and atmospheric fate of biologically produced nitrous oxide. Ann Rev Earth Planet Sci 31(1):329–356CrossRefGoogle Scholar
  110. Stevens R, Laughlin R, Malone J (1998) Soil pH affects the processes reducing nitrate to nitrous oxide and di-nitrogen. Soil Biol Biochem 30(8–9):1119–1126CrossRefGoogle Scholar
  111. Stevenson F (1994) Humus chemistry: genesis, composition, reactions. Wiley, New YorkGoogle Scholar
  112. Stevenson F, Swaby R (1964) Nitrosation of soil organic matter: I. Nature of gases evolved during nitrous acid treatment of lignins and humic substances. Soil Sci Soc Am J 28(6):773–778CrossRefGoogle Scholar
  113. Stevenson F, Harrison R, Wetselaar R, Leeper R (1970) Nitrosation of soil organic matter: III. Nature of gases produced by reaction of nitrite with lignins, humic substances, and phenolic constituents under neutral and slightly acidic conditions. Soil Sci Soc Am J 34(3):430–435CrossRefGoogle Scholar
  114. Stieglmeier M, Mooshammer M, Kitzler B, Wanek W, Zechmeister-Boltenstern S, Richter A, Schleper C (2014) Aerobic nitrous oxide production through N-nitrosating hybrid formation in ammonia-oxidizing archaea. ISME J 8(5):1135–1146CrossRefGoogle Scholar
  115. Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural waters. Wiley, New YorkGoogle Scholar
  116. Sutka R, Ostrom N, Ostrom P, Gandhi H, Breznak J (2003) Nitrogen isotopomer site preference of N2O produced by Nitrosomonas europaea and Methylococcus capsulatus Bath. Rapid Commun Mass Sp 17(7):738–745CrossRefGoogle Scholar
  117. Sutka R, Ostrom N, Ostrom P, Gandhi H, Breznak J (2004) Erratum: nitrogen isotopomer site preference of N2O produced by Nitrosomonas europaea and Methylococcus capsulatus Bath. Rapid Commun Mass Sp 18(12):1411–1412CrossRefGoogle Scholar
  118. Sutka RL, Ostrom N, Ostrom P, Breznak J, Gandhi H, Pitt A, Li F (2006) Distinguishing nitrous oxide production from nitrification and denitrification on the basis of isotopomer abundances. Appl Environ Microbiol 72(1):638–644CrossRefGoogle Scholar
  119. Tebo BM, Johnson HA, McCarthy JK, Templeton AS (2005) Geomicrobiology of manganese (II) oxidation. Trends Microbiol 13(9):421–428CrossRefGoogle Scholar
  120. Thamdrup B, Dalsgaard T (2000) The fate of ammonium in anoxic manganese oxide-rich sediment. Geochim Cosmochim Acta 64(24):4157–4164CrossRefGoogle Scholar
  121. Thomson A, Giannopoulos G, Pretty J, Baggs E, Richardson D (2012) Biological sources and sinks of nitrous oxide and strategies to mitigate emissions. Philos Trans R Soc B 367(1593):1157–1168CrossRefGoogle Scholar
  122. Thorn K, Mikita M (2000) Nitrite fixation by humic substances nitrogen-15 nuclear magnetic resonance evidence for potential intermediates in chemodenitrification. Soil Sci Soc Am J 64(2):568–582CrossRefGoogle Scholar
  123. Toyoda S, Mutobe H, Yamagishi H, Yoshida N, Tanji Y (2005) Fractionation of N2O isotopomers during production by denitrifier. Soil Biol Biochem 37(8):1535–1545CrossRefGoogle Scholar
  124. Vajrala N, Martens-Habbena W, Sayavedra-Soto LA, Schauer A, Bottomley PJ, Stahl DA, Arp DJ (2013) Hydroxylamine as an intermediate in ammonia oxidation by globally abundant marine archaea. Proc Natl Acad Sci 110(3):1006–1011CrossRefGoogle Scholar
  125. Van Cleemput O (1998) Subsoils: chemo- and biological denitrification, N2O and N2 emissions. Nutr Cycles Agroecosys 52(2–3):187–194CrossRefGoogle Scholar
  126. Van Cleemput O, Baert L (1984) Nitrite-a key compound in N-loss processes under acid conditions. Plant Soil 76(1–3):233–241CrossRefGoogle Scholar
  127. Van Cleemput O, Samater A (1996) Nitrite in soils: accumulation and role in the formation of gasseous N compounds. Fertil Res 45(1):81–89CrossRefGoogle Scholar
  128. Venkiteswaran J, Rosamond M, Schiff S (2014) Nonlinear response of riverine N2O fluxes to oxygen and temperature. Environ Sci Technol 48(3):1566–1573CrossRefGoogle Scholar
  129. Venterea RT (2007) Nitrite-driven nitrous oxide production under aerobic soil conditions: kinetics and biochemical controls. Global Change Biol 13(8):1798–1809CrossRefGoogle Scholar
  130. Venterea R, Rolston D (2000) Nitric and nitrous oxide emissions following fertilizer application to agricultural soil: biotic and abiotic mechanisms and kinetics. Global Change Biol 105(D12):15117–15129Google Scholar
  131. Von Breymann MT, De Angelis MA, Gordon LI (1982) Gas chromatography with electron capture detection for determination of hydroxylamine in seawater. Anal Chem 54(7):1209–1210CrossRefGoogle Scholar
  132. Walker C, de La Torre J, Klotz M, Urakawa H, Pinel N, Arp D, Brochier-Armanet C, Chain P, Chan P, Gollabgir A (2010) Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea. Proc Natl Acad Sci USA 107(19):8818–8823CrossRefGoogle Scholar
  133. Ward B, Zafiriou O (1988) Nitrification and nitric oxide in the oxygen minimum of the eastern tropical North Pacific. Deep Sea Res 35(7):1127–1142CrossRefGoogle Scholar
  134. Weber KA, Achenbach LA, Coates JD (2006) Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol 4(10):752–764CrossRefGoogle Scholar
  135. Williams E, Hutchinson G, Fehsenfeld F (1992) NOx and N2O emissions from soil. Global Biogeochem Cycles 6(4):351–388CrossRefGoogle Scholar
  136. Wolf D, Dao T, Scott H, Lavy T (1989) Influence of sterilization methods on selected soil microbiological, physical, and chemical properties. J Environ Qual 18(1):39–44CrossRefGoogle Scholar
  137. Wrage N, Velthof G, van Beusichem M, Oenema O (2001) Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol Biochem 33(12–13):1723–1732CrossRefGoogle Scholar
  138. Wunderlin P, Lehmann M, Siegrist H, Tuzson B, Joss A, Emmenegger L, Mohn J (2013) Isotope signatures of N2O in a mixed microbial population system: constraints on N2O producing pathways in wastewater treatment. Environ Sci Technol 47(3):1339–1348Google Scholar
  139. Yang W, Weber K, Silver W (2012) Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction. Nat Geosci 5(8):538–541CrossRefGoogle Scholar
  140. Zafiriou OC, McFarland M (1980) Determination of trace levels of nitric oxide in aqueous solution. Anal Chem 52(11): 1662–1667 CrossRefGoogle Scholar
  141. Zafiriou O, McFarland M, Bromund R (1980) Nitric oxide in seawater. Science 207(4431):637–639CrossRefGoogle Scholar
  142. Zamora L, Oschlies A (2014) Surface nitrification: a major uncertainty in marine N2O emissions. Geophys Res Lett 41(12):4247–4253CrossRefGoogle Scholar
  143. Zhu X, Burger M, Doane T, Horwath W (2013a) Ammonia oxidation pathways and nitrifier denitrification are significant sources of N2O and NO under low oxygen availability. Proc Natl Acad Sci USA 110(16):6328–6333CrossRefGoogle Scholar
  144. Zhu X, Silva LC, Doane TA, Horwath WR (2013b) Iron: the forgotten driver of nitrous oxide production in agricultural soil. PLoS ONE 8(3):e60146CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Xia Zhu-Barker
    • 1
  • Amanda R. Cavazos
    • 2
  • Nathaniel E. Ostrom
    • 3
  • William R. Horwath
    • 1
  • Jennifer B. Glass
    • 2
    Email author
  1. 1.Department of Land, Air, and Water ResourcesUniversity of California DavisDavisUSA
  2. 2.School of Earth and Atmospheric SciencesGeorgia Institute of TechnologyAtlantaUSA
  3. 3.Department of Integrative BiologyMichigan State UniversityEast LansingUSA

Personalised recommendations