, Volume 126, Issue 1–2, pp 173–195 | Cite as

Carbon cycle of an urban watershed: exports, sources, and metabolism



Rivers transport and transform significant quantities of carbon to coastal zones globally. Urbanization and climate change impact the transport and transformation of carbon by altering hydrology, water temperatures, and in-stream metabolism rates. Changes in exports, sources, and metabolism of carbon influence ecosystem processes, food webs, and greenhouse gases. We characterized exports, sources, and metabolism of carbon in four urban watersheds using a combination of discrete stream chemistry measurements and continuous water-quality sensors. Over three years, watershed DOC exports in the Baltimore-Washington D.C. metropolitan area ranged from 9 to 23 kg ha−1 year−1. DIC exports ranged from 19 to 59 kg ha−1 year−1. Daily contributions from in-stream metabolism varied between −65 and 90 % of DIC export depending on stream size and streamflow conditions. Negative contributions from metabolism occurred on days when streams were autotrophic. All streams were heterotrophic during 60 to 87 % of each year, but showed significant peaks in autotrophy during spring and summer. Differences in the timing and magnitude of peaks in springtime net ecosystem productivity were likely driven by varying light availability across streams of different sizes and riparian shading. CO2 was consistently over-saturated with respect to the atmosphere on all sampling dates and was 0.25–2.9 mg C L−1. Exports, sources, and metabolism of DOC and DIC showed strong predictable patterns across streamflow. Thus, we present a new conceptual model for predicting carbon transport and transformation across changing streamflow and light availability (with impacts on sources and fluxes of DOC, DIC, and CO2). Overall, our results and conceptual model suggest that urbanization accelerates the transition of streams from transporters to transformers of carbon across streamflow, with implications for timing and magnitude of CO2 fluxes, river alkalinization, and oxygen demand in downstream waters.


Carbon Greenhouse gases Dissolved organic matter Weathering Urban evolution Metabolism Urban watershed continuum 



This research was supported by NSF DBI 0640300, NSF CBET 1058502, NSF NASA NNX11AM28G, Baltimore Ecosystem Study LTER project (NSF DEB-1027188), NSF EAR 1426844, Maryland Sea Grant Maryland Sea Grant Award R/WS-2, Maryland Sea Grant Graduate Fellowship, and Maryland Water Resources Research Center Graduate Fellowship. The authors would like to thank Joe Bell and Cherie Miller at the USGS for maintaining continuous water quality measurements at these sites, and for graciously making sensor data available on the web. Without the USGS Maryland Science Center, much of this work would not have been possible. We would also like to thank Gordon Holtgrieve, who kindly provided help and advice with adapting the BaMM model for R and inspecting data files. Shuiwang Duan, Karen Prestegaard, Dan Jones, Shahan Haq, Tamara Newcomer Johnson, Tom Doody, and Michael Pennino provided helpful feedback throughout the project. Additionally, we would like to thank the undergraduate and graduate students who assisted with field sampling, particularly Evan McMullen, Emily Eshleman, and Ravindra Kempaiah.

Compliances with ethical standards

Conflict of interest

The authors do not claim any conflicts of interest.

Ethical approval

The present study was conducted without the involvement of human participants and/or animals. The following is a summary of all funding sources that contributed to this project. We do not claim any potential conflicts of interest.


This research was supported by NSF DBI 0640300, NSF CBET 1058502, NSF NASA NNX11AM28G, Baltimore Ecosystem Study LTER Project (NSF DEB-1027188), NSF EAR 1426844, Maryland Sea Grant Maryland Sea Grant Award R/WS-2, Maryland Sea Grant Graduate Fellowship, and Maryland Water Resources Research Center Graduate Fellowship.

Supplementary material

10533_2015_151_MOESM1_ESM.docx (122 kb)
Supplementary material 1 (DOCX 122 kb)


  1. Acuña V, Giorgi A, Muñoz I et al (2004) Flow extremes and benthic organic matter shape the metabolism of a headwater Mediterranean stream. Freshw Biol 49:960–971CrossRefGoogle Scholar
  2. Aitkenhead JA, Hope D, Billett MF (1999) The relationship between dissolved organic carbon in stream water and soil organic pools at different spatial scales. Hydrol Process 13:1289–1302CrossRefGoogle Scholar
  3. Aitkenhead-Peterson JA, Steele MK, Nahar N, Santhy K (2009) Dissolved organic carbon and nitrogen in urban and rural watersheds of south-central Texas: land use and land management influences. Biogeochemistry 96:119–129. doi: 10.1007/s10533-009-9348-2 CrossRefGoogle Scholar
  4. Andrade TMB, Camargo PB, Silva DML et al (2011) Dynamics of dissolved forms of carbon and inorganic nitrogen in small watersheds of the coastal Atlantic forest in Southeast Brazil. Water Air Soil Pollut 214:393–408. doi: 10.1007/s11270-010-0431-z CrossRefGoogle Scholar
  5. Ballester MV, Martinelli LA, Krusche AV et al (1999) Effects of increasing organic matter loading on the dissolved O2, free dissolved CO2 and respiration rates in the Piracicaba River basin, Southeast Brazil. Water Res 33:2119–2129. doi: 10.1016/S0043-1354(98)00438-2 CrossRefGoogle Scholar
  6. Barnes RT, Raymond PA (2009) The contribution of agricultural and urban activities to inorganic carbon fluxes within temperate watersheds. Chem Geol 266:318–327. doi: 10.1016/j.chemgeo.2009.06.018 CrossRefGoogle Scholar
  7. Battin TJ, Kaplan LA, Findlay SEG et al (2008) Biophysical controls on organic carbon fluxes in fluvial networks. Nat Geosci 1:95–100. doi: 10.1038/ngeo101 CrossRefGoogle Scholar
  8. Beaulieu JJ, Arango CP, Balz DA, Shuster WD (2013) Continuous monitoring reveals multiple controls on ecosystem metabolism in a suburban stream. Freshw Biol 58:918–937. doi: 10.1111/fwb.12097 CrossRefGoogle Scholar
  9. Beaulieu JJ, Mayer PM, Kaushal SS et al (2014) Effects of urban stream burial on organic matter dynamics and reach scale nitrate retention. Biogeochemistry 121:107–126. doi: 10.1007/s10533-014-9971-4 CrossRefGoogle Scholar
  10. Berggren M, Lapierre J-F, del Giorgio PA (2012) Magnitude and regulation of bacterioplankton respiratory quotient across freshwater environmental gradients. ISME J 6:984–993. doi: 10.1038/ismej.2011.157 CrossRefGoogle Scholar
  11. Berner RA, Lasaga AC, Garrels RM (1983) The carbonate-silicate geochemical cycle and its effect on atmospheric carbon-dioxide over the past 100 million years. Am J Sci 283(7):641–683CrossRefGoogle Scholar
  12. Bernot MJ, Sobota DJ, Hall RO et al (2010) Inter-regional comparison of land-use effects on stream metabolism. Freshw Biol 55:1874–1890. doi: 10.1111/j.1365-2427.2010.02422.x CrossRefGoogle Scholar
  13. Bianchi TS, Garcia-Tigreros F, Yvon-lewis SA et al (2013) Enhanced transfer of terrestrially derived carbon to the atmosphere in a flooding event. Geophys Res Lett 40:116–122. doi: 10.1029/2012GL054145 CrossRefGoogle Scholar
  14. Catford JA, Walsh CJ, Beardall J (2007) Catchment urbanization increases benthic microalgal biomass in streams under controlled light conditions. Aquat Sci 69:511–522. doi: 10.1007/s00027-007-0907-0 CrossRefGoogle Scholar
  15. Cohen MJ, Kurz MJ, Heffernan JB et al (2013) Diel phosphorus variation and the stoichiometry of ecosystem metabolism in a large spring-fed river. Ecol Monogr 83:155–176. doi: 10.1890/12-1497.1 CrossRefGoogle Scholar
  16. Cole JJ, Prairie YT, Caraco NF et al (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:172–185. doi: 10.1007/s10021-006-9013-8 CrossRefGoogle Scholar
  17. Connor NP, Sarraino S, Frantz DE et al (2014) Geochemical characteristics of an urban river: influences of an anthropogenic landscape. Appl Geochem 47:209–216. doi: 10.1016/j.apgeochem.2014.06.012 CrossRefGoogle Scholar
  18. Daniel MHB, Montebelo AA, Bernardes MC et al (2001) Effects of urban sewage on dissolved oxygen, dissolved inorganic and organic carbon, and electrical conductivity of small streams along a gradient of urbanization in the Piracicaba River basin. Water Air Soil Pollut 136:189–206CrossRefGoogle Scholar
  19. del Giorgio PA, Pace ML (2008) Relative independence of organic carbon transport and processing in a large temperate river: the Hudson River as both pipe and reactor. Limnol Oceanogr 53:185–197. doi: 10.4319/lo.2008.53.1.0185 CrossRefGoogle Scholar
  20. Demars BO, Russell Manson J, Ólafsson JS et al (2011) Temperature and the metabolic balance of streams. Freshw Biol 56:1106–1121. doi: 10.1111/j.1365-2427.2010.02554.x CrossRefGoogle Scholar
  21. Devereux OH, Prestegaard KL, Needelman BA, Gellis AC (2010) Suspended-sediment sources in an urban watershed, Northeast Branch Anacostia River, Maryland. Hydrol Process 24:1391–1403. doi: 10.1002/hyp.7604 CrossRefGoogle Scholar
  22. Dicken CL, Nicholson SW, Horton JD et al (2005) Preliminary integrated geologic map databases for the United States: Delaware, Maryland, New York, Pennsylvania, and Virginia. U.S. Geological Survey Report 2005-1325, Reston.
  23. Duan S, Kaushal SS (2013) Warming increases carbon and nutrient fluxes from sediments in streams across land use. Biogeosciences 10:1193–1207. doi: 10.5194/bg-10-1193-2013 CrossRefGoogle Scholar
  24. Duan S, Kaushal SS (2015) Salinization alters fluxes of bioreactive elements from streams and soils across land use. Biogeosci Discuss 12:7411–7448CrossRefGoogle Scholar
  25. Duan S, Amon RMW, Brinkmeyer RL (2014) Tracing sources of organic matter in adjacent urban streams having different degrees of channel modification. Sci Total Environ 485–486:252–262. doi: 10.1016/j.scitotenv.2014.03.066 CrossRefGoogle Scholar
  26. Edmonds JW, Grimm NB (2011) Abiotic and biotic controls of organic matter cycling in a managed stream. J Geophys Res. doi: 10.1029/2010JG001429 Google Scholar
  27. Elmore HL, West WF (1961) Effect of temperature on stream reaeration. J Sanit Eng Div Proc Am Soc Civil Eng 87:59–71Google Scholar
  28. EPA Watershed Assessment, Tracking & Environmental Results System (WATERS) (August 24, 2015). In: WATERS Data using Google Earth, Accessed 2 July 2015
  29. Fahey TJ, Siccama TG, Driscoll CT et al (2005) The biogeochemistry of carbon at Hubbard Brook. Biogeochemistry 75:109–176. doi: 10.1007/s10533-004-6321-y CrossRefGoogle Scholar
  30. Findlay SEG, McDowell WH, Fischer D et al (2010) Total carbon analysis may overestimate organic carbon content of fresh waters in the presence of high dissolved inorganic carbon. Limnol Oceanogr Methods 8:196–201Google Scholar
  31. Foster GD, Roberts EC, Gruessner B, Velinsky DJ (2000) Hydrogeochemistry and transport of organic contaminants in an urban watershed of Chesapeake Bay (USA). Appl Geochem 15:901–915CrossRefGoogle Scholar
  32. Fraley LM, Miller AJ, Welty C (2009) Contribution of in-channel processes to sediment yield of an urbanizing watershed. J Am Water Resour Assoc 45:748–766. doi: 10.1111/j.1752-1688.2009.00320.x CrossRefGoogle Scholar
  33. Fry J, Xian G, Jin S, Dewitz J et al (2011) Completion of the 2006 national land cover database for the conterminous United States. PE&RS 77(9):858–864Google Scholar
  34. Green SM, Machin R, Cresser MS (2008) Long-term road salting effects on dispersion of organic matter from roadside soils into drainage water. Chem Ecol 24:221–231CrossRefGoogle Scholar
  35. Griffiths NA, Tank JL, Royer TV et al (2013) Agricultural land use alters the seasonality and magnitude of stream metabolism. Limnol Oceanogr 58:1513–1529. doi: 10.4319/lo.2013.58.4.1513 Google Scholar
  36. Hall RO, Beaulieu JJ (2013) Estimating autotrophic respiration in streams using daily metabolism data. Freshw Sci 32:507–516. doi: 10.1899/12-147.1 CrossRefGoogle Scholar
  37. Hall RO, Tank JL (2003) Ecosystem metabolism controls nitrogen uptake in streams in Grand Teton National Park, Wyoming. Limnol Oceanogr 48:1120–1128. doi: 10.4319/lo.2003.48.3.1120 CrossRefGoogle Scholar
  38. Heffernan JB, Cohen MJ (2010) Direct and indirect coupling of primary production and diel nitrate dynamics in a subtropical spring-fed river. Limnol Oceanogr 55:677–688. doi: 10.4319/lo.2009.55.2.0677 CrossRefGoogle Scholar
  39. Hobbie SE, Baker LA, Buyarski C et al (2013) Decomposition of tree leaf litter on pavement: implications for urban water quality. Urban Ecosyst 17:369–385. doi: 10.1007/s11252-013-0329-9 CrossRefGoogle Scholar
  40. Hofmann AF, Soetaert K, Middelburg JJ (2008) Present nitrogen and carbon dynamics in the Scheldt estuary using a novel 1-D model. Biogeosciences 5:981–1006. doi: 10.5194/bg-5-981-2008 CrossRefGoogle Scholar
  41. Holtgrieve GW, Schindler DE, Branch TA, A’mar ZT (2010) Simultaneous quantification of aquatic ecosystem metabolism and reaeration using a Bayesian statistical model of oxygen dynamics. Limnol Oceanogr 55:1047–1062. doi: 10.4319/lo.2010.55.3.1047 CrossRefGoogle Scholar
  42. Hope D, Naegeli MW, Chan AH, Grimm NB (2004) Nutrients on asphalt parking surfaces in an urban environment. Water Air Soil Pollut 4:371–390CrossRefGoogle Scholar
  43. Hopkinson CS, Buffam I, Hobbie JE et al (1998) Terrestrial inputs of organic matter to coastal ecosystems: an intercomparison of chemical characteristics and bioavailability. Biogeochemistry 43:211–234CrossRefGoogle Scholar
  44. Hossler K, Bauer JE (2013) Amounts, isotopic character, and ages of organic and inorganic carbon exported from rivers to ocean margins: 2. Assessment of natural and anthropogenic controls. Global Biogeochem Cycles 27:347–362. doi: 10.1002/gbc.20034 CrossRefGoogle Scholar
  45. Hotchkiss ER, Hall RO Jr, Sponseller RA et al (2015) Sources of and processes controlling CO2 emissions change with the size of streams and rivers. Nat Geosci. doi: 10.1038/ngeo2507 Google Scholar
  46. Huanxin W, Presley BJ, Velinsky DJ (1997) Distribution and sources of phosphorus in tidal river sediments in the Washington, DC, Area. Environ Geol 30:224–230CrossRefGoogle Scholar
  47. Huguet A, Vacher L, Relexans S et al (2009) Properties of fluorescent dissolved organic matter in the Gironde Estuary. Org Geochem 40:706–719. doi: 10.1016/j.orggeochem.2009.03.002 CrossRefGoogle Scholar
  48. Imberger SJ, Thompson RM, Grace MR (2011) Urban catchment hydrology overwhelms reach scale effects of riparian vegetation on organic matter dynamics. Freshw Biol 56:1370–1389. doi: 10.1111/j.1365-2427.2011.02575.x CrossRefGoogle Scholar
  49. Inamdar S, Dhillon G, Singh S et al (2013) Temporal variation in end-member chemistry and its influence on runoff mixing patterns in a forested, Piedmont catchment. Water Resour Res 49:1828–1844. doi: 10.1002/wrcr.20158 CrossRefGoogle Scholar
  50. Izagirre O, Agirre U, Bermejo M et al (2008) Environmental controls of whole-stream metabolism identified from continuous monitoring of Basque streams. J North Am Benthol Soc 27:252–268. doi: 10.1899/07 CrossRefGoogle Scholar
  51. Jarvie HP, Neal C, Leach DV et al (1997) Major ion concentrations and the inorganic carbon chemistry of the Humber rivers. Sci Total Environ 194:285–302CrossRefGoogle Scholar
  52. Jones JB (1997) Benthic organic matter storage in streams: influence of detrital import and export, retention mechanisms, and climate. J North Am Benthol Soc. 16(1):109–119CrossRefGoogle Scholar
  53. Jones JB, Mulholland PJ (1998) Carbon dioxide variation in a hardwood forest stream: an integrative measure of whole catchment soil respiration. Ecosystems 1:183–196CrossRefGoogle Scholar
  54. Kaushal SS, Belt KT (2012) The urban watershed continuum: evolving spatial and temporal dimensions. Urban Ecosyst 15:409–435. doi: 10.1007/s11252-012-0226-7 CrossRefGoogle Scholar
  55. Kaushal SS, Lewis WM Jr (2005) Fate and transport of dissolved organic nitrogen in minimally disturbed streams of Colorado, USA. Biogeochemistry 74:303–321CrossRefGoogle Scholar
  56. Kaushal SS, Groffman PM, Likens GE et al (2005) Increased salinization of fresh water in the northeastern United States. Proc Natl Acad Sci USA 102:13517–13520CrossRefGoogle Scholar
  57. Kaushal SS, Likens GE, Jaworski NA et al (2010) Rising stream and river temperatures in the United States. Front Ecol Environ 8:461–466. doi: 10.1890/090037 CrossRefGoogle Scholar
  58. Kaushal SS, Groffman PM, Band LE et al (2011) Tracking nonpoint source nitrogen pollution in human-impacted watersheds. Environ Sci Technol 45:8225–8232CrossRefGoogle Scholar
  59. Kaushal SS, Likens GE, Utz RM et al (2013) Increased river alkalinization in the Eastern U.S. Environ Sci Technol 47:10302–10311. doi: 10.1021/es401046s Google Scholar
  60. Kaushal SS, Mayer PM, Vidon PG et al (2014a) Land use and climate variability amplify carbon, nutrient, and contaminant pulses: a review with management implications. J Am Water Resour Assoc 50:585–614. doi: 10.1111/jawr.12204 CrossRefGoogle Scholar
  61. Kaushal SS, Delaney-Newcomb K, Findlay SE et al (2014b) Longitudinal patterns in carbon and nitrogen fluxes and stream metabolism along an urban watershed continuum. Biogeochemistry 121:23–44. doi: 10.1007/s10533-014-9979-9 CrossRefGoogle Scholar
  62. Kaushal SS, McDowell WH, Wollheim WM (2014c) Tracking evolution of urban biogeochemical cycles: past, present, and future. Biogeochemistry 121:1–21. doi: 10.1007/s10533-014-0014-y CrossRefGoogle Scholar
  63. Kaushal SS, McDowell WH, Wollheim WM, Newcomer Johnson TA, Mayer PM, Belt KT, Pennino MJ (2015) Urban Evolution: the Role of Water. Water 7:4063–4087CrossRefGoogle Scholar
  64. Langland M, Blomquist J, Moyer D, Hyer K (2012) Nutrient and suspended-sediment trends, loads, and yields and development of an indicator of streamwater quality at nontidal sites in the Chesapeake Bay Watershed, 1985–2010. Scientific investigations report 2012-5093. U.S. Geological Survey, RestonGoogle Scholar
  65. Leopold LB (1968) Hydrology for urban land planning—a guidebook on the hydrologic effects of urban land use. In: Geological Survey Circular 554. U.S. Geological Survey, RestonGoogle Scholar
  66. Lu YH, Bauer JE, Canuel EA et al (2014) Effects of land use on sources and ages of inorganic and organic carbon in temperate headwater streams. Biogeochemistry 119(1–3):275–292. doi: 10.1007/s10533-014-9965-2 CrossRefGoogle Scholar
  67. Martinelli LA, Krusche AV, Victoria RL et al (1999) Effects of sewage on the chemical composition of Piracicaba River, Brazil. Water Soil Pollut 110:67–79CrossRefGoogle Scholar
  68. Maryland Department of Environment (2015) Current status of Total Maximum Daily Load (TMDL) development in Maryland. Accessed 25 Jan 2015
  69. Mayorga E, Aufdenkampe AK, Masiello CA et al (2005) Young organic matter as a source of carbon dioxide outgassing from Amazonian rivers. Nature 436:538–541. doi: 10.1038/nature03880 CrossRefGoogle Scholar
  70. McDowell WH, Fisher SG (1976) Autumnal processing of dissolved organic matter in a small woodland stream ecosystem. Ecology 57:561–569CrossRefGoogle Scholar
  71. McDowell WH, Likens GE (1988) Origin, composition, and flux of dissolved organic carbon in the Hubbard Brook Valley. Ecol Monogr 58:177–195CrossRefGoogle Scholar
  72. Meybeck M (1987) Global chemical-weathering of surficial rocks estimated from river dissolved loads. Am J Sci 287(5):401–428CrossRefGoogle Scholar
  73. Meybeck M (2003) Global occurrence of major elements in rivers. In: Drever JI, Holland HD, Turekian KK (eds) Treatise on geochemistry: biogeochemistry, vol 5. Elsevier, New York, pp 207–223CrossRefGoogle Scholar
  74. Middelburg JJ, Nieuwenhuize J (1998) Carbon and nitrogen stable isotopes in suspended matter and sediments from the Schelde Estuary. Mar Chem 60:217–225CrossRefGoogle Scholar
  75. Miller CV, Chanat JG, Bell JM (2013) Water quality in the Anacostia River, Maryland and Rock Creek, Washington, D.C.: Continuous and discrete monitoring with simulations to estimate concentrations and yields of nutrients, suspended sediment, and bacteria. Open-File Report 2013-1034. U.S. Geological Survey, RestonGoogle Scholar
  76. Moens T, Luyten C, Middelburg JJ, Herman PMJ, Vincx M (2002) Tracing organic matter sources of estuarine tidal flat nematodes with stable carbon isotopes. Marine Ecology-Progress Series 234:127–137CrossRefGoogle Scholar
  77. Moran MA, Zepp RG (1997) Role of photoreactions in the formation of biologically compounds from dissolved organic matter. Limnol Oceanogr 42:1307–1316CrossRefGoogle Scholar
  78. Mulholland PJ, Fellows CS, Tank JL et al (2001) Inter-biome comparison of factors controlling stream metabolism. Freshw Biol 46:1503–1517CrossRefGoogle Scholar
  79. Neal C, House WA, Jarive HP, Eatherall A (1998) The significance of dissolved carbon dioxide in major lowland rivers entering the North Sea. Sci Total Environ 210(211):187–203CrossRefGoogle Scholar
  80. Newcomer TA, Kaushal SS, Mayer PM et al (2012) Influence of natural and novel organic carbon sources on denitrification in forest, degraded urban, and restored streams. Ecol Monogr 82:449–466CrossRefGoogle Scholar
  81. Odum HT (1956) Primary production in flowing waters. Limnol Oceanogr 1:102–117CrossRefGoogle Scholar
  82. Ohno T (2002) Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter. Environ Sci Technol 36:742–746CrossRefGoogle Scholar
  83. Paul MJ, Meyer JL (2001) Streams in the urban landscape. Annu Rev Ecol Syst 32:333–365CrossRefGoogle Scholar
  84. Pennino MJ, Kaushal SS, Beaulieu JJ et al (2014) Effects of urban stream burial on nitrogen uptake and ecosystem metabolism: implications for watershed nitrogen and carbon fluxes. Biogeochemistry 121:247–269. doi: 10.1007/s10533-014-9958-1 CrossRefGoogle Scholar
  85. Perdue EM, Ritchie JD (2003) Dissolved organic matter in freshwaters. In: Drever JI, Holland HD, Turekian KK (eds) Treatise on geochemistry: biogeochemistry, vol 5. Elsevier, New York, pp 273–318CrossRefGoogle Scholar
  86. Pierrot D, Lewis E, Wallace D (2006) MS Excel program developed for CO2 system calculations. doi:  10.3334/CDIAC/otg.CO2SYS_XLS_CDIAC105a
  87. Prasad MBK, Kaushal SS, Murtugudde R (2013) Long-term pCO2 dynamics in rivers in the Chesapeake Bay watershed. Appl Geochemistry 31:209–215CrossRefGoogle Scholar
  88. R Core Team (2014) R: A language and environment for statistical computing.
  89. Raymond PA, Cole JJ (2003) Increase in the export of alkalinity from North America’s largest river. Science 301:88–91. doi: 10.1126/science.1083788 CrossRefGoogle Scholar
  90. Raymond PA, Saiers JE (2010) Event controlled DOC export from forested watersheds. Biogeochemistry 100:197–209. doi: 10.1007/s10533-010-9416-7 CrossRefGoogle Scholar
  91. Regnier P, Friedlingstein P, Ciais P et al (2013) Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat Geosci 6:597–607. doi: 10.1038/ngeo1830 CrossRefGoogle Scholar
  92. Roberts BJ, Mulholland PJ (2007) In-stream biotic control on nutrient biogeochemistry in a forested stream, West Fork of Walker Branch. J Geophys Res 112:G04002. doi: 10.1029/2007JG000422 Google Scholar
  93. Runkel RL, Crawford CG, Cohn TA (2004) Load Estimator (LOADEST): a FORTRAN program for estimating constituent loads in streams and rivers. U.S. Geological Survey techniques and methods book 4. U.S. Geological Survey, RestonGoogle Scholar
  94. Schnoor JL, Stumm W (1986) The role of chemical-weathering in the neutralization of acidic deposition. Schweiz. Z Hydrol 48:171–195Google Scholar
  95. Sickman JO, Zanoli MJ, Mann HL (2007) Effects of urbanization on organic carbon loads in the Sacramento River. Water Resour Res, California. doi: 10.1029/2007WR005954 Google Scholar
  96. Sinsabaugh RL, Findlay SEG, Franchini P, Fischer D (1997) Enzymatic analysis of riverine bacterioplankton production. Limnol Oceanogr 42:29–38CrossRefGoogle Scholar
  97. Sobczak William V, Findlay SEG (2002) Variation in bioavailability of dissolved organic carbon among stream hyporheic flopaths. Ecology 83:3194–3209CrossRefGoogle Scholar
  98. Stanley EH, Powers SM, Lottig NR et al (2012) Contemporary changes in dissolved organic carbon (DOC) in human-dominated rivers: is there a role for DOC management? Freshw Biol 57:26–42. doi: 10.1111/j.1365-2427.2011.02613.x CrossRefGoogle Scholar
  99. Stelzer RS, Heffernan J, Likens GE (2003) The influence of dissolved nutrients and particulate organic matter quality on microbial respiration and biomass in a forest stream. Freshw Biol 48:1925–1937. doi: 10.1046/j.1365-2427.2003.01141.x CrossRefGoogle Scholar
  100. Tank JL, Rosi-Marshall EJ, Griffiths NA et al (2010) A review of allochthonous organic matter dynamics and metabolism in streams. J North Am Benthol Soc 29:118–146. doi: 10.1899/08-170.1 CrossRefGoogle Scholar
  101. Taylor SL, Roberts SC, Walsh CJ, Hatt BE (2004) Catchment urbanisation and increased benthic algal biomass in streams: linking mechanisms to management. Freshw Biol 49:835–851. doi: 10.1111/j.1365-2427.2004.01225.x CrossRefGoogle Scholar
  102. Uehlinger U (2006) Annual cycle and inter-annual variability of gross primary production and ecosystem respiration in a floodprone river during a 15-year period. Freshw Biol 51:938–950. doi: 10.1111/j.1365-2427.2006.01551.x CrossRefGoogle Scholar
  103. USDA Agricultural Research Service (2014) Beltsville Agricultural Research Center Weather Data. Beltsville, Maryland Accessed 13 October 2014
  104. Van den Meersche K, Van Rijswijk P, Soetaert K, Middelburg JJ (2009) Autochthonous and allochthonous contributions to mesozooplankton diet in a tidal river and estuary: integrating carbon isotope and fatty acid constraints. Limnol Oceanogr 54:62–74. doi: 10.4319/lo.2009.54.1.0062 CrossRefGoogle Scholar
  105. Vannote RL, Wayne MG, Cummins KW et al (1980) The river continuum concept. Can J Fish Aquat Sci 37:130–137CrossRefGoogle Scholar
  106. Walsh C, Roy A, Feminella JW et al (2005) The urban stream syndrome: current knowledge and the search for a cure. J North Am Benthol Soc 24:706–723CrossRefGoogle Scholar
  107. Wanninkhof R (1992) Relationship between wind speed and gas exchange. J Geophys Res 97:7373–7382. doi: 10.1029/92JC00188 CrossRefGoogle Scholar
  108. Washington Council of Governments (2010) Anacostia River watershed restoration plan. 1–146. Source: “Sligo Creek USGS.” 38°59′10.4″N, 77°00′17.5″W; “Northeast Branch USGS” 38°57′36.9″N, 76°55′33.5″W; “Paint Branch USGS” 39°01′59.3″N, long 76°57′51.4″W, Google Earth. Imagery date: April 11, 2015. Accessed 2 July 2015
  109. Webster JR, Meyer JL (1997) Organic matter budgets for streams: a synthesis. J North Am Benthol Soc 16:141–161CrossRefGoogle Scholar
  110. Weiss RF (1974) Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar Chem 2:203–215CrossRefGoogle Scholar
  111. Yeakley JA, Hook AM (2005) Stormflow dynamics of dissolved organic carbon and total dissolved nitrogen in a small urban watershed. Biogeochemistry 75:409–431. doi: 10.1007/s10533-005-1860-4 CrossRefGoogle Scholar
  112. Yorke TH, Herb WJ (1978) Effects of urbanization on streamflow and sediment transport in the Rock Creek and Anacostia River Basins, Montgomery County, Maryland 1962–74. US GPO, Washington, pp 1–71Google Scholar
  113. Young RG, Huryn AD (1996) Interannual variation in discharge controls ecosystem metabolism along a grassland river continuum. Can J Fish Aquat Sci 53:2199–2211. doi: 10.1139/f96-186 CrossRefGoogle Scholar
  114. Zeng F-W, Masiello CA, Hockaday WC (2010) Controls on the origin and cycling of riverine dissolved inorganic carbon in the Brazos River, Texas. Biogeochemistry 104:275–291. doi: 10.1007/s10533-010-9501-y CrossRefGoogle Scholar
  115. Zhang S, Lu XX, Sun H et al (2009) Major ion chemistry and dissolved inorganic carbon cycling in a human-disturbed mountainous river (the Luodingjiang River) of the Zhujiang (Pearl River), China. Sci Total Environ 407:2796–2807. doi: 10.1016/j.scitotenv.2008.12.036 CrossRefGoogle Scholar
  116. Zsolnay A, Baigar E, Jimenez M et al (1999) Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying. Chemosphere 38:45–50CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of GeologyUniversity of MarylandCollege ParkUSA
  2. 2.Earth System Science Interdisciplinary CenterCollege ParkUSA

Personalised recommendations