Advertisement

Biogeochemistry

, Volume 126, Issue 1–2, pp 115–129 | Cite as

Getting to the root of the problem: litter decomposition and peat formation in lowland Neotropical peatlands

  • Jorge Hoyos-Santillan
  • Barry H. Lomax
  • David Large
  • Benjamin L. Turner
  • Arnoud Boom
  • Omar R. Lopez
  • Sofie Sjögersten
Article

Abstract

Litter decomposition is an important control on carbon accumulation in tropical peatlands. We investigated the contribution of different litter tissues from two peatland tree species (Raphia taedigera and Campnosperma panamensis) to peat formation in four lowland tropical peatlands in the Republic of Panama. Leaves, stems, and roots decomposed at different rates; with roots being the slowest to decompose among tissues. The position of litter in the peat profile strongly influenced the decomposition rate of all tissue types. Roots decomposed up to five times faster at the surface than at 50 cm depth. Molecular characterization of litter and peat profiles by tetramethylammonium-pyrolysis–gas chromatography–mass spectrometry (TMAH-Py-GC/MS) revealed that the peat is formed predominantly of decomposed roots and stems, as indicated by the high lignin, low methylated fatty acids and carbohydrate concentrations in these litter types. Taken together, these data demonstrate that roots play a fundamental role in the formation of lowland Neotropical peatlands.

Keywords

Carbon Litter decomposition Root Tropical peat Pyrolysis Mass spectrometry 

Notes

Acknowledgments

Data to support this article can be made available upon request. Jorge Hoyos-Santillan thanks The National Council on Science and Technology (CONACyT-Mexico) for his Ph.D. scholarship (211962). The authors also thank the Light Hawk program for its support in the aerial surveys. We thank Erick Brown for invaluable help as field assistant; as well as Gabriel Jácome, Plinio Góndola, Tania Romero and Dayana Agudo for logistical support and laboratory assistance at the STRI. In addition, we thank John Corrie and Darren Hepworth for their help in logistics and laboratory assistance at the University of Nottingham.

Supplementary material

10533_2015_147_MOESM1_ESM.docx (55 kb)
Supplementary material 1 (DOCX 54 kb)
10533_2015_147_MOESM2_ESM.pdf (3.7 mb)
Supplementary material 2 (PDF 3827 kb)
10533_2015_147_MOESM3_ESM.docx (30 kb)
Supplementary material 3 (DOCX 29 kb)
10533_2015_147_MOESM4_ESM.pdf (59 kb)
Supplementary material 4 (PDF 58 kb)
10533_2015_147_MOESM5_ESM.docx (43 kb)
Supplementary material 5 (DOCX 42 kb)
10533_2015_147_MOESM6_ESM.pdf (41 kb)
Supplementary material 6 (PDF 40 kb)

References

  1. Aber JD, Melillo JM, McClaugherty CA (1990) Predicting long-term patterns of mass loss, nitrogen dynamics, and soil organic matter formation from initial fine litter chemistry in temperate forest ecosystems. Can J Bot 68:2201–2208. doi: 10.1139/b90-287 CrossRefGoogle Scholar
  2. Adair EC, Hobbie SE, Hobbie RK (2010) Single-pool exponential decomposition models: potential pitfalls in their use in ecological studies. Ecology 91:1225–1236. doi: 10.1890/09-0430.1 CrossRefGoogle Scholar
  3. Anderson J, Muller J (1975) Palynological study of a holocene peat and a miocene coal deposit from NW Borneo. Rev Palaeobot Palynol 19:291–351. doi: 10.1016/0034-6667(75)90049-4 CrossRefGoogle Scholar
  4. Andriesse JP, Schelhaas RM (1987) A monitoring study on nutrient cycles in soils used for shifting cultivation under various climatic conditions in tropical Asia. III. The effects of land clearing through burning on fertility level. Agric Ecosyst Environ 19:311–332. doi: 10.1016/0167-8809(87)90059-4 CrossRefGoogle Scholar
  5. Austin AT, Vivanco L, González-Arzac A, Pérez LI (2014) There’s no place like home? An exploration of the mechanisms behind plant litter-decomposer affinity in terrestrial ecosystems. New Phytol. doi: 10.1111/nph.12959 Google Scholar
  6. Ayres E, Steltzer H, Simmons BL et al (2009) Home-field advantage accelerates leaf litter decomposition in forests. Soil Biol Biochem 41:606–610. doi: 10.1016/j.soilbio.2008.12.022 CrossRefGoogle Scholar
  7. Berg B (2000) Litter decomposition and organic matter turnover in northern forest soils. For Ecol Manag 133:13–22. doi: 10.1016/S0378-1127(99)00294-7 CrossRefGoogle Scholar
  8. Bloomfield J, Vogt KA, Vogt DJ (1993) Decay rate and substrate quality of fine roots and foliage of two tropical tree species in the Luquillo Experimental Forest, Puerto Rico. Plant Soil 150:233–245. doi: 10.1007/BF00013020 CrossRefGoogle Scholar
  9. Brady MA (1997) Organic matter dynamics of coastal peat deposits in Sumatra. The University of British Columbia, VancouverGoogle Scholar
  10. Briggs DEG (1999) Molecular taphonomy of animal and plant cuticles: selective preservation and diagenesis. Philos Trans R Soc B Biol Sci 354:7–17. doi: 10.1098/rstb.1999.0356 CrossRefGoogle Scholar
  11. Bruchet A, Rousseau C, Mallevialle J (1990) Pyrolysis-GC-MS for investigating high-molecular-weight THM precursors and other refractory organics. J Am Water Work Assoc 82:66–74Google Scholar
  12. Bu’Lock JD, Harbone JB (1980) Phenolic compounds derived from shrikimate. In: Bu’Lock JD (ed) Biosynth. Royal Society of Chemistry, London, pp 40–75CrossRefGoogle Scholar
  13. Buttler A, Dinel H, Levesque PEM (1994) Effects of physical, chemical and botanical characteristics of peat on carbon gas fluxes. Soil Sci 158:365–374. doi: 10.1097/00010694-199411000-00008 CrossRefGoogle Scholar
  14. Buurman P, Schellekens J, Fritze H, Nierop KGJ (2007) Selective depletion of organic matter in mottled podzol horizons. Soil Biol Biochem 39:607–621. doi: 10.1016/j.soilbio.2006.09.012 CrossRefGoogle Scholar
  15. Carr AS, Boom A, Chase BM et al (2010) Molecular fingerprinting of wetland organic matter using pyrolysis-GC/MS: an example from the southern Cape coastline of South Africa. J Paleolimnol 44:947–961. doi: 10.1007/s10933-010-9466-9 CrossRefGoogle Scholar
  16. Challinor JM (1989) A pyrolysis-derivatisation-gas chromatography technique for the structural elucidation of some synthetic polymers. J Anal Appl Pyrolysis 16:323–333. doi: 10.1016/0165-2370(89)80015-4 CrossRefGoogle Scholar
  17. Chambers JQ, Higuchi N, Schimel JP et al (2000) Decomposition and carbon cycling of dead trees in tropical forests of the central Amazon. Oecologia 122:380–388. doi: 10.1007/s004420050044 CrossRefGoogle Scholar
  18. Chen H, Harmon ME, Sexton J, Fasth B (2002) Fine-root decomposition and N dynamics in coniferous forests of the Pacific Northwest, U.S.A. Can J For Res 32:320–331. doi: 10.1139/x01-202 CrossRefGoogle Scholar
  19. Chimner RA, Ewel KC (2005) A tropical freshwater wetland: II. Production, decomposition, and peat formation. Wetl Ecol Manag 13:671–684. doi: 10.1007/s11273-005-0965-9 CrossRefGoogle Scholar
  20. Clymo RS (1984) The limits to peat bog growth. Philos Trans R Soc B Biol Sci 303:605–654. doi: 10.1098/rstb.1984.0002 CrossRefGoogle Scholar
  21. Cornelissen JHC, Van Bodegom PM, Aerts R et al (2007) Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes. Ecol Lett 10:619–627. doi: 10.1111/j.1461-0248.2007.01051.x CrossRefGoogle Scholar
  22. Cornwell WK, Cornelissen JHC, Amatangelo K et al (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071. doi: 10.1111/j.1461-0248.2008.01219.x CrossRefGoogle Scholar
  23. Couwenberg J, Dommain R, Joosten H (2009) Greenhouse gas fluxes from tropical peatlands in south-east Asia. Glob Chang Biol 16:1715–1732. doi: 10.1111/j.1365-2486.2009.02016.x CrossRefGoogle Scholar
  24. Couwenberg J, Thiele A, Tanneberger F et al (2011) Assessing greenhouse gas emissions from peatlands using vegetation as a proxy. Hydrobiologia 674:67–89. doi: 10.1007/s10750-011-0729-x CrossRefGoogle Scholar
  25. Cusack DF, Chou WW, Yang WH et al (2009) Controls on long-term root and leaf litter decomposition in neotropical forests. Glob Chang Biol 15:1339–1355. doi: 10.1111/j.1365-2486.2008.01781.x CrossRefGoogle Scholar
  26. Dommain R, Couwenberg J, Joosten H (2011) Development and carbon sequestration of tropical peat domes in south-east Asia: links to post-glacial sea-level changes and Holocene climate variability. Quat Sci Rev 30:999–1010. doi: 10.1016/j.quascirev.2011.01.018 CrossRefGoogle Scholar
  27. Eglinton G, Hamilton RJ (1967) Leaf epicuticular waxes. Science 156:1322–1335. doi: 10.1126/science.156.3780.1322 CrossRefGoogle Scholar
  28. Esterle JS, Ferm JC (1994) Spatial variability in modern tropical peat deposits from Sarawak, Malaysia and Sumatra, Indonesia: analogues for coal. Int J Coal Geol 26:1–41. doi: 10.1016/0166-5162(94)90030-2 CrossRefGoogle Scholar
  29. Falkowski P (2000) The global carbon cycle: a test of our knowledge of earth as a system. Science 290:291–296. doi: 10.1126/science.290.5490.291 CrossRefGoogle Scholar
  30. Field CB, Barros VR, Mach K, Mastrandrea M (2014) Climate change 2014: Impacts, adaptation, and vulnerability. Working Group II contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, GenevaGoogle Scholar
  31. Freeman C, Ostle N, Kang H (2001) An enzymic “latch” on a global carbon store. Nature 409:149. doi: 10.1038/35051650 CrossRefGoogle Scholar
  32. Frolking S, Talbot J (2011) Modeling peatland carbon dynamics on decadal to millennial time scales. Meet Pap 1–6Google Scholar
  33. Gholz HL, Wedin DA, Smitherman SM et al (2000) Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Glob Chang Biol 6:751–765. doi: 10.1046/j.1365-2486.2000.00349.x CrossRefGoogle Scholar
  34. Gorham E, Janssens JA, Glaser PH (2003) Rates of peat accumulation during the postglacial period in 32 sites from Alaska to Newfoundland, with special emphasis on northern Minnesota. Can J Bot 81:429–438. doi: 10.1139/b03-036 CrossRefGoogle Scholar
  35. Graça J, Santos S (2007) Suberin: a biopolyester of plants’ skin. Macromol Biosci 7:128–135. doi: 10.1002/mabi.200600218 CrossRefGoogle Scholar
  36. Hobbie SE (2005) Contrasting effects of substrate and fertilizer nitrogen on the early stages of litter decomposition. Ecosystems 8:644–656. doi: 10.1007/s10021-003-0110-7 CrossRefGoogle Scholar
  37. Hoyos-Santillan J (2014) Controls of carbon turnover in lowland tropical peatlands. doi: 10.13140/2.1.3387.2329Google Scholar
  38. Ishiwatari M, Ishiwatari R, Sakashita H et al (1991) Pyrolysis of chlorophyll a after preliminary heating at a moderate temperature: implications for the origin of prist-1-ene on kerogen pyrolysis. J Anal Appl Pyrol 18:207–218. doi: 10.1016/0165-2370(91)87002-4 CrossRefGoogle Scholar
  39. Jackson CR, Liew KC, Yule CM (2009) Structural and functional changes with depth in microbial communities in a tropical Malaysian peat swamp forest. Microb Ecol 57:402–412. doi: 10.1007/s00248-008-9409-4 CrossRefGoogle Scholar
  40. Jauhiainen J, Takahashi H, Heikkinen JEP et al (2005) Carbon fluxes from a tropical peat swamp forest floor. Glob Chang Biol 11:1788–1797. doi: 10.1111/j.1365-2486.2005.001031.x CrossRefGoogle Scholar
  41. Joosten H, Clarke D (2002) Wise use of mires and peatlands. International Mire Conservation Group / International Peat Society, p 304Google Scholar
  42. Joosten H, Couwenberg J (2008) Peatlands and carbon. In: Parish F, Sirin A, Charman D et al (eds) Assessment of peatlands, biodiversity and climate change. Main report, Global Environment Centre, Kuala Lumpur and Wetlands International, Wageningen, pp 100–117Google Scholar
  43. Kolattukudy PE (1980) Biopolyester membranes of plants: cutin and suberin. Science 208:990–1000. doi: 10.1126/science.208.4447.990 CrossRefGoogle Scholar
  44. Kuder T, Kruge MA (2001) Carbon dynamics in peat bogs: insights from substrate macromolecular chemistry. Global Biogeochem Cycles 15:721–727. doi: 10.1029/2000GB001293 CrossRefGoogle Scholar
  45. Kurnianto S, Warren M, Talbot J et al (2015) Carbon accumulation of tropical peatlands over millennia: a modeling approach. Glob Chang Biol 21:431–444. doi: 10.1111/gcb.12672 CrossRefGoogle Scholar
  46. Laiho R (2006) Decomposition in peatlands: reconciling seemingly contrasting results on the impacts of lowered water levels. Soil Biol Biochem 38:2011–2024. doi: 10.1016/j.soilbio.2006.02.017 CrossRefGoogle Scholar
  47. McClymont EL, Bingham EM, Nott CJ et al (2011) Pyrolysis GC–MS as a rapid screening tool for determination of peat-forming plant composition in cores from ombrotrophic peat. Org Geochem 42:1420–1435. doi: 10.1016/j.orggeochem.2011.07.004 CrossRefGoogle Scholar
  48. Meier CL, Bowman WD (2008) Links between plant litter chemistry, species diversity, and below-ground ecosystem function. Proc Natl Acad Sci U S A 105:19780–19785. doi: 10.1073/pnas.0805600105 CrossRefGoogle Scholar
  49. Melillo JM, Aber JD, Muratore JF (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621. doi: 10.2307/1936780 CrossRefGoogle Scholar
  50. Melillo JM, Naiman RJ, Aber JD, Linkins AE (1984) Factors controlling mass loss and nitrogen dynamics of plant litter decaying in northern streams. Bull Mar Sci 35:341–356Google Scholar
  51. Middleton BA, McKee KL (2001) Degradation of mangrove tissues and implications for peat formation in Belizean island forests. J Ecol 89:818–828. doi: 10.1046/j.0022-0477.2001.00602.x CrossRefGoogle Scholar
  52. Mulder MM, Van Der Hage ERE, Boon JJ (1992) Analytical in source pyrolytic methylation electron impact mass spectrometry of phenolic acids in biological matrices. Phytochem Anal 3:165–172. doi: 10.1002/pca.2800030405 CrossRefGoogle Scholar
  53. Nip M, Tegelaar EW, de Leeuw JW et al (1986) A new non-saponifiable highly aliphatic and resistant biopolymer in plant cuticles. Naturwissenschaften 73:579–585. doi: 10.1007/BF00368768 CrossRefGoogle Scholar
  54. Olson JS (1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44:322–331. doi: 10.2307/1932179 CrossRefGoogle Scholar
  55. Page SE, Rieley JO, Banks CJ (2011) Global and regional importance of the tropical peatland carbon pool. Glob Chang Biol 17:798–818. doi: 10.1111/j.1365-2486.2010.02279.x CrossRefGoogle Scholar
  56. Parsi Z, Hartog N, Górecki T, Poerschmann J (2007) Analytical pyrolysis as a tool for the characterization of natural organic matter—a comparison of different approaches. J Anal Appl Pyrolysis 79:9–15. doi: 10.1016/j.jaap.2006.10.013 CrossRefGoogle Scholar
  57. Phillips S, Rouse GEG, Bustin RM (1997) Vegetation zones and diagnostic pollen profiles of a coastal peat swamp, Bocas del Toro, Panamá. Palaeogeogr Palaeoclimatol Palaeoecol 128:301–338. doi: 10.1016/S0031-0182(97)81129-7 CrossRefGoogle Scholar
  58. Prager A, Barthelmes A, Joosten H (2006) A touch of tropics in temperate mires: of Alder carrs and carbon cycles. In: Silpola J, Warnecke S, Hood G et al (eds) Peatlands International 2/2006. International Peat Society, Jyväskylä, pp 26–29Google Scholar
  59. Schellekens J (2013) The use of molecular chemistry (pyrolisis-GC/MS) in the environmental interpretation of peat. Wageningen UniversityGoogle Scholar
  60. Schellekens J, Buurman P (2011) n-Alkane distributions as palaeoclimatic proxies in ombrotrophic peat: the role of decomposition and dominant vegetation. Geoderma 164:112–121. doi: 10.1016/j.geoderma.2011.05.012 CrossRefGoogle Scholar
  61. Schellekens J, Buurman P, Pontevedra-Pombal X (2009) Selecting parameters for the environmental interpretation of peat molecular chemistry—a pyrolysis-GC/MS study. Org Geochem 40:678–691. doi: 10.1016/j.orggeochem.2009.03.006 CrossRefGoogle Scholar
  62. Schellekens J, Buurman P, Kuyper TW et al (2015) Influence of source vegetation and redox conditions on lignin-based decomposition proxies in graminoid-dominated ombrotrophic peat (Penido Vello, NW Spain). Geoderma 237–238:270–282. doi: 10.1016/j.geoderma.2014.09.012 CrossRefGoogle Scholar
  63. Scowcroft PG (2009) Mass and nutrient dynamics of decaying litter from Passiflora mollissima and selected native species in a Hawaiian montane rain forest. J Trop Ecol 13:407. doi: 10.1017/S0266467400010592 CrossRefGoogle Scholar
  64. Silver W, Miya R (2001) Global patterns in root decomposition: comparisons of climate and litter quality effects. Oecologia 129:407–419. doi: 10.1007/s004420100740 CrossRefGoogle Scholar
  65. Singh JS, Gupta SR (1977) Plant decomposition and soil respiration in terrestrial ecosystems. Bot Rev 43:449–528. doi: 10.1007/BF02860844 CrossRefGoogle Scholar
  66. Sjögersten S, Cheesman AW, Lopez O, Turner BL (2011) Biogeochemical processes along a nutrient gradient in a tropical ombrotrophic peatland. Biogeochemistry 104:147–163. doi: 10.1007/s10533-010-9493-7 CrossRefGoogle Scholar
  67. Sjögersten S, Black CR, Evers S et al (2014) Tropical wetlands: a missing link in the global carbon cycle? Global Biogeochem Cycles. doi:  10.1002/2014GB004844
  68. Steward CE, Neff J, Raab TK et al (2009) Soil organic carbon characterization by pyrolysis-gas chromatography-mass spectrometry (py-GC/MS) and tetramethylammonium-py-GC/MS: tracing plant and microbial contributions to SOM. In: 94th ESA annual convention on advances in biochemical methods for studying organic matter dynamics in an ecological contextGoogle Scholar
  69. Talbot JM, Treseder KK (2012) Interactions among lignin, cellulose, and nitrogen drive litter chemistry–decay relationships. Ecology 93:345–354. doi: 10.1890/11-0843.1 CrossRefGoogle Scholar
  70. Taylor BR, Parkinson D, Parsons WFJ (1989) Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology 70:97. doi: 10.2307/1938416 CrossRefGoogle Scholar
  71. Taylor BR, Prescott CE, Parsons WJF, Parkinson D (1991) Substrate control of litter decomposition in four Rocky Mountain coniferous forests. Can J Bot 69:2242–2250. doi: 10.1139/b91-281 CrossRefGoogle Scholar
  72. Tripathi SK, Sumida A, Shibata H et al (2006) Leaf litterfall and decomposition of different above- and belowground parts of birch (Betula ermanii) trees and dwarf bamboo (Sasa kurilensis) shrubs in a young secondary forest in northern Japan. Biol Fertil Soils 43:237–246. doi: 10.1007/s00374-006-0100-y CrossRefGoogle Scholar
  73. Trofymow JA, Moore TR, Titus B et al (2002) Rates of litter decomposition over 6 years in Canadian forests: influence of litter quality and climate. Can J For Res 32:789–804. doi: 10.1139/x01-117 CrossRefGoogle Scholar
  74. Turunen J, Tomppo E, Tolonen K, Reinikainen A (2002) Estimating carbon accumulation rates of undrained mires in Finland—application to boreal and subarctic regions. The Holocene 12:69–80. doi: 10.1191/0959683602hl522rp CrossRefGoogle Scholar
  75. Valiela I, Wilson J (1984) Importance of chemical composition of salt marsh litter on decay rates and feeding by detritivores. Bull Mar Sci 35:261–269Google Scholar
  76. Vancampenhout K, Wouters K, Caus A et al (2008) Fingerprinting of soil organic matter as a proxy for assessing climate and vegetation changes in last interglacial palaeosols (Veldwezelt, Belgium). Quat Res 69:145–162. doi: 10.1016/j.yqres.2007.09.003 CrossRefGoogle Scholar
  77. VSN International (2011) GenStat for Windows 14th EditionGoogle Scholar
  78. Wieder RK, Lang GE (1982) A critique of the analytical methods used in examining decomposition data obtained from litter bags. Ecology 63:1636. doi: 10.2307/1940104 CrossRefGoogle Scholar
  79. Wright E, Black CR, Cheesman AW et al (2011) Contribution of subsurface peat to CO2 and CH4 fluxes in a neotropical peatland. Glob Chang Biol 17:2867–2881. doi: 10.1111/j.1365-2486.2011.02448.x CrossRefGoogle Scholar
  80. Wright E, Black CR, Cheesman AW et al (2013) Impact of simulated changes in water table depth on ex situ decomposition of leaf litter from a Neotropical peatland. Wetlands 33:217–226. doi: 10.1007/s13157-012-0369-6 CrossRefGoogle Scholar
  81. Yule CM, Gomez LN (2008) Leaf litter decomposition in a tropical peat swamp forest in Peninsular Malaysia. Wetl Ecol Manag 17:231–241. doi: 10.1007/s11273-008-9103-9 CrossRefGoogle Scholar
  82. Zeikus JG (1981) Lignin metabolism and the carbon cycle. In: Advances in microbial ecology. Springer, pp 211–243Google Scholar
  83. Zhang X, Wang W (2015) The decomposition of fine and coarse roots: their global patterns and controlling factors. Sci Rep 5:9940. doi: 10.1038/srep09940 CrossRefGoogle Scholar
  84. Zhang D, Hui D, Luo Y, Zhou G (2008) Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. J Plant Ecol 1:85–93. doi: 10.1093/jpe/rtn002 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jorge Hoyos-Santillan
    • 1
  • Barry H. Lomax
    • 1
  • David Large
    • 2
  • Benjamin L. Turner
    • 3
  • Arnoud Boom
    • 4
  • Omar R. Lopez
    • 5
  • Sofie Sjögersten
    • 1
  1. 1.Division of Agricultural and Environmental Science, School of BiosciencesThe University of NottinghamLoughboroughUK
  2. 2.Department of Chemical and Environmental EngineeringThe University of NottinghamNottinghamUK
  3. 3.Smithsonian Tropical Research InstituteAnconRepublic of Panama
  4. 4.Department of GeographyUniversity of LeicesterLeicesterUK
  5. 5.Centro de Biodiversidad y Descubrimiento de DrogasInstituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP)ClaytonRepublic of Panama

Personalised recommendations