Advertisement

Biogeochemistry

, Volume 126, Issue 1–2, pp 241–249 | Cite as

Soil incubations reproduce field methane dynamics in a subarctic wetland

  • Suzanne B. Hodgkins
  • Jeffrey P. Chanton
  • Lauren C. Langford
  • Carmody K. McCalley
  • Scott R. Saleska
  • Virginia I. Rich
  • Patrick M. Crill
  • William T. Cooper
Article

Abstract

A major challenge in peatland carbon cycle modeling is the estimation of subsurface methane (CH4) and carbon dioxide (CO2) production and consumption rates and pathways. The most common methods for modeling these processes are soil incubations and stable isotope modeling, both of which may involve departures from field conditions. To explore the impacts of these departures, we measured CH4/CO2 concentration ratios and 13C fractionation factors (αC, indicating CH4 production pathways) in field pore water from a thawing subarctic peatland, and compared these values to those observed in incubations of corresponding peat samples. Incubation CH4/CO2 production ratios were significantly and positively correlated with observed field CH4/CO2 concentration ratios, though observed field ratios were ~20 % of those in incubations due to CH4’s lower solubility in pore water. After correcting the field ratios for CH4 loss with an isotope mass balance model, the incubation CH4/CO2 ratios and αC were both significantly positively correlated with field ratios and αC (respectively), both with slopes indistinguishable from 1. Although CH4/CO2 ratios and αC were slightly higher in the incubations, these shifts were consistent along the thaw progression, indicating that ex situ incubations can replicate trends in in situ CH4 production.

Keywords

Peatlands Methane Geochemistry Soil incubations Stable isotopes 

Notes

Acknowledgments

We thank Tyler Mauney for incubation preparation, Tyler Logan for sampling assistance, and the Abisko Scientific Research Station for sampling infrastructure. This work was funded by the US Department of Energy Office of Biological and Environmental Research under the Genomic Science program (Awards DE-SC0004632 and DE-SC0010580). SR Saleska and VI Rich received support through the Ecosystem Genomics Initiative, by the University of Arizona Technology and Research Initiative Fund, through the Water, Environmental and Energy Solutions Initiative.

Supplementary material

10533_2015_142_MOESM1_ESM.tif (65 kb)
Supplementary material 1 (TIFF 65 kb)
10533_2015_142_MOESM2_ESM.pdf (145 kb)
Supplementary material 2 (PDF 146 kb)

References

  1. Bäckstrand K, Crill PM, Jackowicz-Korczyñski M et al (2010) Annual carbon gas budget for a subarctic peatland, Northern Sweden. Biogeosciences 7:95–108. doi: 10.5194/bg-7-95-2010 CrossRefGoogle Scholar
  2. Balch WE, Fox GE, Magrum LJ et al (1979) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296Google Scholar
  3. Barker HA (1936) On the biochemistry of the methane fermentation. Arch Für Mikrobiol 7:404–419. doi: 10.1007/BF00407413 CrossRefGoogle Scholar
  4. Basiliko N, Yavitt JB, Dees PM, Merkel SM (2003) Methane biogeochemistry and methanogen communities in two northern peatland ecosystems, New York State. Geomicrobiol J 20:563–577. doi: 10.1080/713851165 CrossRefGoogle Scholar
  5. Blodau C, Moore TR (2003) Experimental response of peatland carbon dynamics to a water table fluctuation. Aquat Sci 65:47–62. doi: 10.1007/s000270300004 CrossRefGoogle Scholar
  6. Bräuer SL, Cadillo-Quiroz H, Yashiro E et al (2006) Isolation of a novel acidiphilic methanogen from an acidic peat bog. Nature 442:192–194. doi: 10.1038/nature04810 CrossRefGoogle Scholar
  7. Broder T, Blodau C, Biester H, Knorr KH (2015) Sea spray, trace elements, and decomposition patterns as possible constraints on the evolution of CH4 and CO2 concentrations and isotopic signatures in oceanic ombrotrophic bogs. Biogeochemistry 122:327–342. doi: 10.1007/s10533-014-0044-5 CrossRefGoogle Scholar
  8. Chanton JP (2005) The effect of gas transport on the isotope signature of methane in wetlands. Org Geochem 36:753–768. doi: 10.1016/j.orggeochem.2004.10.007 CrossRefGoogle Scholar
  9. Conrad R (1999) Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microbiol Ecol 28:193–202. doi: 10.1111/j.1574-6941.1999.tb00575.x CrossRefGoogle Scholar
  10. Corbett JE, Tfaily MM, Burdige DJ et al (2013) Partitioning pathways of CO2 production in peatlands with stable carbon isotopes. Biogeochemistry 114:327–340. doi: 10.1007/s10533-012-9813-1 CrossRefGoogle Scholar
  11. Corbett JE, Tfaily MM, Burdige DJ et al (2015) The relative importance of methanogenesis in the decomposition of organic matter in northern peatlands. J Geophys Res Biogeosciences 120:280–293. doi: 10.1002/2014JG002797 CrossRefGoogle Scholar
  12. Dannenberg S, Wudler J, Conrad R (1997) Agitation of anoxic paddy soil slurries affects the performance of the methanogenic microbial community. FEMS Microbiol Ecol 22:257–263. doi: 10.1016/S0168-6496(96)00097-9 CrossRefGoogle Scholar
  13. Hines ME, Duddleston KN (2001) Carbon flow to acetate and C1 compounds in northern wetlands. Geophys Res Lett 28:4251–4254. doi: 10.1029/2001GL012901 CrossRefGoogle Scholar
  14. Hines ME, Duddleston KN, Rooney-Varga JN, et al (2008) Uncoupling of acetate degradation from methane formation in Alaskan wetlands: connections to vegetation distribution. Glob Biogeochem Cycles 22:GB2017. doi:  10.1029/2006GB002903
  15. Hodgkins SB, Tfaily MM, McCalley CK et al (2014) Changes in peat chemistry associated with permafrost thaw increase greenhouse gas production. Proc Natl Acad Sci USA 111:5819–5824. doi: 10.1073/pnas.1314641111 CrossRefGoogle Scholar
  16. Horn MA, Matthies C, Küsel K et al (2003) Hydrogenotrophic methanogenesis by moderately acid-tolerant methanogens of a methane-emitting acidic peat. Appl Environ Microbiol 69:74–83. doi: 10.1128/AEM.69.1.74-83.2003 CrossRefGoogle Scholar
  17. Hornibrook ERC, Longstaffe FJ, Fyfe WS (1997) Spatial distribution of microbial methane production pathways in temperate zone wetland soils: stable carbon and hydrogen isotope evidence. Geochim Cosmochim Acta 61:745–753. doi: 10.1016/S0016-7037(96)00368-7 CrossRefGoogle Scholar
  18. Hornibrook ERC, Longstaffe FJ, Fyfe WS (2000) Evolution of stable carbon isotope compositions for methane and carbon dioxide in freshwater wetlands and other anaerobic environments. Geochim Cosmochim Acta 64:1013–1027. doi: 10.1016/S0016-7037(99)00321-X CrossRefGoogle Scholar
  19. Johansson T, Malmer N, Crill PM et al (2006) Decadal vegetation changes in a northern peatland, greenhouse gas fluxes and net radiative forcing. Glob Change Biol 12:2352–2369. doi: 10.1111/j.1365-2486.2006.01267.x CrossRefGoogle Scholar
  20. Kendall MM, Boone DR (2006) The order Methanosarcinales. In: Dworkin M, Falkow S, Rosenberg E et al (eds) The prokaryotes. Springer New York, New York, pp 244–256CrossRefGoogle Scholar
  21. Knorr K-H, Glaser B, Blodau C (2008) Fluxes and 13C isotopic composition of dissolved carbon and pathways of methanogenesis in a fen soil exposed to experimental drought. Biogeosciences 5:1457–1473. doi: 10.5194/bg-5-1457-2008 CrossRefGoogle Scholar
  22. Kotsyurbenko OR, Chin K-J, Glagolev MV et al (2004) Acetoclastic and hydrogenotrophic methane production and methanogenic populations in an acidic West-Siberian peat bog. Environ Microbiol 6:1159–1173. doi: 10.1111/j.1462-2920.2004.00634.x CrossRefGoogle Scholar
  23. Kotsyurbenko OR, Friedrich MW, Simankova MV et al (2007) Shift from acetoclastic to H2-dependent methanogenesis in a West Siberian peat bog at low pH values and isolation of an acidophilic Methanobacterium strain. Appl Environ Microbiol 73:2344–2348. doi: 10.1128/AEM.02413-06 CrossRefGoogle Scholar
  24. Lovley DR, Klug MJ (1983) Methanogenesis from methanol and methylamines and acetogenesis from hydrogen and carbon dioxide in the sediments of a eutrophic lake. Appl Environ Microbiol 45:1310–1315Google Scholar
  25. Malmer N, Johansson T, Olsrud M, Christensen TR (2005) Vegetation, climatic changes and net carbon sequestration in a North-Scandinavian subarctic mire over 30 years. Glob Change Biol 11:1895–1909. doi: 10.1111/j.1365-2486.2005.01042.x Google Scholar
  26. Mayer HP, Conrad R (1990) Factors influencing the population of methanogenic bacteria and the initiation of methane production upon flooding of paddy soil. FEMS Microbiol Lett 73:103–111. doi: 10.1016/0378-1097(90)90656-B CrossRefGoogle Scholar
  27. McCalley CK, Woodcroft BJ, Hodgkins SB et al (2014) Methane dynamics regulated by microbial community response to permafrost thaw. Nature 514:478–481. doi: 10.1038/nature13798 CrossRefGoogle Scholar
  28. Mondav R, Woodcroft BJ, Kim E-H et al (2014) Discovery of a novel methanogen prevalent in thawing permafrost. Nat Commun 5:3212. doi: 10.1038/ncomms4212 CrossRefGoogle Scholar
  29. Nilsson M, Öquist M (2009) Partitioning litter mass loss into carbon dioxide and methane in peatland ecosystems. In: Baird AJ, Belyea LR, Comas X et al (eds) Carbon cycling in northern peatlands. American Geophysical Union, Washington, DC, pp 131–144CrossRefGoogle Scholar
  30. Noyce GL, Varner RK, Bubier JL, Frolking S (2014) Effect of Carex rostrata on seasonal and interannual variability in peatland methane emissions. J Geophys Res Biogeosciences 119:24–34. doi: 10.1002/2013JG002474 CrossRefGoogle Scholar
  31. Roslev P, King GM (1996) Regulation of methane oxidation in a freshwater wetland by water table changes and anoxia. FEMS Microbiol Ecol 19:105–115. doi: 10.1111/j.1574-6941.1996.tb00203.x CrossRefGoogle Scholar
  32. Schütz H, Seiler W, Conrad R (1989) Processes involved in formation and emission of methane in rice paddies. Biogeochemistry 7:33–53. doi: 10.1007/BF00000896 CrossRefGoogle Scholar
  33. Shoemaker JK, Schrag DP (2010) Subsurface characterization of methane production and oxidation from a New Hampshire wetland. Geobiology 8:234–243. doi: 10.1111/j.1472-4669.2010.00239.x CrossRefGoogle Scholar
  34. Sugimoto A, Wada E (1993) Carbon isotopic composition of bacterial methane in a soil incubation experiment: contributions of acetate and CO2/H2. Geochim Cosmochim Acta 57:4015–4027. doi: 10.1016/0016-7037(93)90350-6 CrossRefGoogle Scholar
  35. Tarvin D, Buswell AM (1934) The methane fermentation of organic acids and carbohydrates. J Am Chem Soc 56:1751–1755. doi: 10.1021/ja01323a030 CrossRefGoogle Scholar
  36. Treat CC, Bubier JL, Varner RK, Crill PM (2007) Timescale dependence of environmental and plant-mediated controls on CH4 flux in a temperate fen. J Geophys Res 112:G01014. doi: 10.1029/2006JG000210 Google Scholar
  37. Treat CC, Wollheim WM, Varner RK et al (2014) Temperature and peat type control CO2 and CH4 production in Alaskan permafrost peats. Glob Change Biol 20:2674–2686. doi: 10.1111/gcb.12572 CrossRefGoogle Scholar
  38. Treat CC, Natali SM, Ernakovich J et al (2015) A pan-Arctic synthesis of CH4 and CO2 production from anoxic soil incubations. Glob Change Biol 21:2787–2803. doi: 10.1111/gcb.12875 CrossRefGoogle Scholar
  39. Turetsky MR (2004) Decomposition and organic matter quality in continental peatlands: the ghost of permafrost past. Ecosystems 7:740–750. doi: 10.1007/s10021-004-0247-z CrossRefGoogle Scholar
  40. Tveit A, Schwacke R, Svenning MM, Urich T (2013) Organic carbon transformations in high-Arctic peat soils: key functions and microorganisms. ISME J 7:299–311. doi: 10.1038/ismej.2012.99 CrossRefGoogle Scholar
  41. Whiticar MJ (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol 161:291–314. doi: 10.1016/S0009-2541(99)00092-3 CrossRefGoogle Scholar
  42. Whiticar MJ, Faber E (1986) Methane oxidation in sediment and water column environments—isotope evidence. Org Geochem 10:759–768. doi: 10.1016/S0146-6380(86)80013-4 CrossRefGoogle Scholar
  43. Whiticar MJ, Faber E, Schoell M (1986) Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation—Isotope evidence. Geochim Cosmochim Acta 50:693–709. doi: 10.1016/0016-7037(86)90346-7 CrossRefGoogle Scholar
  44. Yavitt JB, Lang GE (1990) Methane production in contrasting wetland sites: response to organic-chemical components of peat and to sulfate reduction. Geomicrobiol J 8:27–46. doi: 10.1080/01490459009377876 CrossRefGoogle Scholar
  45. Zinder SH (1993) Physiological ecology of methanogens. In: Ferry JG (ed) Methanogenesis. Springer, US, pp 128–206CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Suzanne B. Hodgkins
    • 1
  • Jeffrey P. Chanton
    • 1
  • Lauren C. Langford
    • 1
  • Carmody K. McCalley
    • 3
  • Scott R. Saleska
    • 2
  • Virginia I. Rich
    • 4
  • Patrick M. Crill
    • 5
  • William T. Cooper
    • 6
  1. 1.Department of Earth, Ocean, and Atmospheric ScienceFlorida State UniversityTallahasseeUSA
  2. 2.Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonUSA
  3. 3.Thomas H. Gosnell School of Life SciencesRochester Institute of TechnologyRochesterUSA
  4. 4.Department of Soil, Water and Environmental ScienceUniversity of ArizonaTucsonUSA
  5. 5.Department of Geological SciencesStockholm UniversityStockholmSweden
  6. 6.Department of Chemistry and BiochemistryFlorida State UniversityTallahasseeUSA

Personalised recommendations