, Volume 125, Issue 2, pp 185–202 | Cite as

Soil respiration variability across a soil moisture and vegetation community gradient within a snow-scoured alpine meadow

  • John F. KnowlesEmail author
  • Peter D. Blanken
  • Mark W. Williams


The alpine tundra landscape is a patchwork of co-mingled ecosystems that vary due to meso-topographical (<100 m) landscape position, shallow subsurface heterogeneity, and subsequent soil moisture availability. This results in hotspots of biological activity, variable carbon cycling over short horizontal distances, and confounds predictions of the alpine tundra response to forecasted environmental change. To advance our understanding of carbon cycling within snow-scoured alpine meadows, we characterized the spatio-temporal variability of soil respiration (R S) from 17 sites across a broadly representative soil moisture and vegetation gradient, within the footprint of ongoing eddy covariance measurements at Niwot Ridge, Colorado, USA. Chamber-based R S samples were collected on a weekly to bi-weekly basis over three complete growing seasons (2011–2013), and a soil moisture threshold was used to integrate the data into dry, mesic, and wet tundra categories. In every year, measured R S was greatest from mesic tundra, followed by wet and then dry tundra locations. Increasing soil moisture invoked a bidirectional R S response from areas of dry and mesic tundra (directly proportional) compared to wet tundra (inversely proportional), and the optimum R S conditions were between 0.30 and 0.45 m3 m−3 soil moisture, which mainly coincided with soil temperatures below 8 °C. We also developed simple models to predict R S from concurrent measurements of soil moisture and temperature, and from nighttime eddy covariance measurements. Both models were significant predictors of R S in all years and for all ecosystem types (where applicable), but the models did not adequately capture the intra-seasonal R S variability. The median cumulative growing season R S flux ranged from 138.6 g C m−2 in the driest year (2013) to 221.4 g C m−2 in the wettest year (2011), but the cumulative growing season fluxes varied by a factor of five between sites. Our results suggest that increased or more intense precipitation in the future has the potential to increase alpine tundra R S, although this effect will be buffered to some degree by compensatory responses from dry, mesic, and wet alpine tundra.


Alpine tundra Soil respiration Soil moisture Bidirectional Carbon cycle Climate change 



This research was supported by NSF grant DEB 1027341 to the Niwot Ridge LTER. John Knowles would also like to acknowledge support from an NSF Doctoral Dissertation Research Improvement Grant (DDRI) BCS 1129562. We thank Dr. Diego Riveros-Iregui for constructive feedback on an early version of this manuscript, Dr. William Bowman for help with plant identification, and Theo Barnhart for assisting with Fig. 3.


  1. Almagro M, Lopez J, Querejeta JI, Martínez-Mena M (2009) Temperature dependence of soil CO2 efflux is strongly modulated by seasonal patterns of moisture availability in a Mediterranean ecosystem. Soil Biol Biochem 41:594–605. doi: 10.1016/j.soilbio.2008.12.021 CrossRefGoogle Scholar
  2. Bahn M, Reichstein M, Davidson EA, Grünzweig J, Jung M, Carbone MS, Epron D, Misson L, Nouvellon Y, Roupsard O, Savage K, Trumbore SE, Gimeno C, Curiel-Yuste J, Tang J, Vargas R, Janssens IA (2010) Soil respiration at mean annual temperature predicts annual total across vegetation types and biomes. Biogeosciences 7:2147–2157. doi: 10.5194/bg-7-2147-2010 CrossRefGoogle Scholar
  3. Baldocchi DD (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Glob Change Biol 9:479–492. doi: 10.1046/j.1365-2486.2003.00629.x CrossRefGoogle Scholar
  4. Baldwin C, Wagner F, Lall U (2003) Rocky Mountain/Great Basin regional climate-change assessment report for the U.S. global change research program. In: Wagner F (ed) Water Resources. Utah State University Press, Logan, pp 79–112Google Scholar
  5. Bardgett RD, Freeman C, Ostle NJ (2008) Microbial contributions to climate change through carbon cycle feedbacks. ISME J 2:805–814. doi: 10.1038/ismej.2008.58 CrossRefGoogle Scholar
  6. Barron-Gafford GA, Cable JM, Patrick-Bentley L, Scott RL, Huxman TE, Jenerette GD, Ogle K (2014) Quantifying the timescales over which exogenous and endogenous conditions affect soil respiration. New Phytol 202:442–454. doi: 10.1111/nph.12675 CrossRefGoogle Scholar
  7. Berryman EM, Barnard HR, Adams HR, Burns MA, Gallo E, Brooks PD (2015) Complex terrain alters temperature and moisture limitations of forest soil respiration across a semi-arid to subalpine gradient. J Geophys Res. doi: 10.1002/2014JG002802 Google Scholar
  8. Billings WD (1973) Arctic and alpine vegetations: similarities, differences, and susceptibility to disturbance. Bioscience 23:697–704CrossRefGoogle Scholar
  9. Blanken PD, Williams MW, Burns SP, Monson RK, Knowles JF, Chowanski K, Ackerman T (2009) A comparison of water and carbon dioxide exchange at a windy alpine tundra and subalpine forest site near Niwot Ridge, Colorado. Biogeochemistry 95:61–76. doi: 10.1007/s10533-009-9325-9 CrossRefGoogle Scholar
  10. Blankinship JC, Hart SC (2012) Consequences of manipulated snow cover on soil gaseous emission and N retention in the growing season: a meta-analysis. Ecosphere 3:1. doi: 10.1890/ES11-00225.1 CrossRefGoogle Scholar
  11. Boden TA, Marland G, Andres RJ (2010) Global, regional, and national fossil fuel CO2 emissions. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, TN, USA. doi: 10.3334/CDIAC/00001_V2010
  12. Bond-Lamberty B, Thomson A (2010) Temperature-associated increases in the global soil respiration record. Nature 464:579–582. doi: 10.1038/nature08930 CrossRefGoogle Scholar
  13. Bowman WD, Steltzer H, Rosenstiel TN, Cleveland CC, Meier CL (2004) Litter effects of two co-occurring alpine species on plant growth, microbial activity and immobilization of nitrogen. Oikos 104:336–344. doi: 10.1111/j.0030-1299.2004.12721.x CrossRefGoogle Scholar
  14. Brooks PD, Grogan P, Templer PH, Groffman P, Öquist MG, Schimel J (2011) Carbon and nitrogen cycling in snow-covered environments. Geography Compass 5:682–699. doi: 10.1111/j.1749-8198.2011.00420.x CrossRefGoogle Scholar
  15. Burns SF (1980) Alpine soil distribution and development, Indian Peaks, Colorado Front Range. Ph.D. dissertation, Geology, University of Colorado, p 360Google Scholar
  16. Cable JM, Ogle K, Williams DG, Weltzin JF, Huxman TE (2008) Soil texture drives responses of soil respiration to precipitation pulses in the Sonoran Desert: implications for climate change. Ecosystems 11:961–979. doi: 10.1007/s10021-008-9172-x CrossRefGoogle Scholar
  17. Conant RT, Ryan MG, Ågren GI, Birge HE, Davidson EA, Eliasson PE, Evans SE, Frey SD, Giardina CP, Hopkins FM, Hyvönen R, Kirschbaum MUF, Lavallee JM, Leifeld J, Parton WJ, Megan Steinweg J, Wallenstein MD, Martin Wetterstedt JÅ, Bradford MA (2011) Temperature and soil organic matter decomposition rates—synthesis of current knowledge and a way forward. Glob Change Biol 17:3392–3404. doi: 10.1111/j.1365-2486.2011.02496.x CrossRefGoogle Scholar
  18. Craine JM, Gelderman TM (2011) Soil moisture controls on temperature sensitivity of soil organic carbon decomposition for a mesic grassland. Soil Biol Biochem 43:455–457. doi: 10.1016/j.soilbio.2010.10.011 CrossRefGoogle Scholar
  19. Craine J, Spurr R, McLauchlan K, Fierer N (2010) Landscape-level variation in temperature sensitivity of soil organic carbon decomposition. Soil Biol Biochem 42:373–375. doi: 10.1016/j.soilbio.2009.10.024 CrossRefGoogle Scholar
  20. Davidson EA, Belk E, Boone RD (1998) Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Glob Change Biol 4:217–227. doi: 10.1046/j.1365-2486.1998.00128.x CrossRefGoogle Scholar
  21. Davidson EA, Samanta S, Caramori SS, Savage K (2012) The dual Arrhenius and Michaelis-Menten kinetics model for decomposition of soil organic matter at hourly to seasonal time scales. Glob Change Biol 18:371–384. doi: 10.1111/j.1365-2486.2011.02546.x CrossRefGoogle Scholar
  22. Emanuel RE, Riveros-Iregui DA, McGlynn BL, Epstein HE (2011) On the spatial heterogeneity of net ecosystem productivity in complex landscapes. Ecosphere 2:86. doi: 10.1890/ES11-00074.1 CrossRefGoogle Scholar
  23. Erickson TA, Williams MW, Winstral A (2005) Persistence of topographic controls on the spatial distribution of snow in rugged mountain terrain, Colorado, United States. Water Resources Research 41:W04014. doi: 10.1029/2003WR002973 CrossRefGoogle Scholar
  24. Falge E, Baldocchi D, Olson R et al (2001) Gap filling strategies for defensible annual sums of net ecosystem exchange. Agric For Meteorol 107:43–69. doi: 10.1016/S0168-1923(00)00235-5 CrossRefGoogle Scholar
  25. Fierer N, Schimel JP (2002) Effects of drying-rewetting frequency on soil carbon and nitrogen transformations. Soil Biol Biochem 34:777–787. doi: 10.1016/S0038-0717(02)00007-X CrossRefGoogle Scholar
  26. Fisk MC, Schmidt SK, Seastedt TR (1998) Topographic patterns of above- and belowground production and nitrogen cycling in alpine tundra. Ecology 79:2253–2266. doi: 10.1890/0012-9658(1998)079[2253:TPOAAB]2.0.CO;2
  27. Freppaz M, Williams MW, Seastedt TR, Filippa G (2012) Response of soil organic and inorganic nutrients in alpine soils to a 16-year factorial snow and N-fertilization experiment, Colorado Front Range, USA. Appl Soil Ecol 62:131–141. doi: 10.1016/j.apsoil.2012.06.006 CrossRefGoogle Scholar
  28. Geng Y, Wang Y, Yang K, Wang S, Zeng H, Baumann F, Kuehn P, Scholten T, He J-S (2012) Soil respiration in Tibetan alpine grasslands: belowground biomass and soil moisture, but not soil temperature, best explain the large-scale patterns. PLoS One 7:e34968. doi: 10.1371/journal.pone.0034968.t004 CrossRefGoogle Scholar
  29. Giblin AE, Nadelhoffer KJ, Shaver GR, Laundre JA, McKerrow AJ (1991) Biogeochemical diversity along a riverside toposequence in Arctic Alaska. Ecol Monogr 61:415–435. doi: 10.2307/2937049 CrossRefGoogle Scholar
  30. Harpold A, Brooks P, Rajagopal S, Heidbuchel I, Jardine A, Stielstra C (2012) Changes in snowpack accumulation and ablation in the intermountain west. Water Resour Res 48:W11501. doi: 10.1029/2012WR011949 Google Scholar
  31. Higgins PD (1976) Soil temperature effects on root respiration and the ecology of alpine and subalpine plants. Bot Gaz 137:110–120CrossRefGoogle Scholar
  32. Hirota M, Zhang P, Gu S, Du M, Shimono A, Shen H, Li Y, Tang Y (2009) Altitudinal variation of ecosystem CO2 fluxes in an alpine grassland from 3600 to 4200 m. J Plant Ecol 2:197–205. doi: 10.1093/jpe/rtp024 CrossRefGoogle Scholar
  33. Huxman TE, Snyder KA, Tissue D, Leffler AJ, Ogle K, Pockman WT, Sandquist DR, Potts DL, Schwinning S (2004) Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia 141:254–268. doi: 10.1007/s00442-004-1682-4 CrossRefGoogle Scholar
  34. Imer D, Merbold L, Eugster W, Buchmann N (2013) Temporal and spatial variations of soil CO2, CH4 and N2O fluxes at three differently managed grasslands. Biogeosciences 10:5931–5945. doi: 10.5194/bg-10-5931-2013 CrossRefGoogle Scholar
  35. Irvine J, Law BE, Kurpius MR (2005) Coupling of canopy gas exchange with root and rhizosphere respiration in a semi-arid forest. Biogeochemistry 73:271–282. doi: 10.1007/s10533-004-2564-x CrossRefGoogle Scholar
  36. Kang S, Doh S, Lee D, Lee D, Jin VL, Kimball JS (2003) Topographic and climatic controls on soil respiration in six temperate mixed-hardwood forest slopes, Korea. Glob Change Biol 9:1427–1437. doi: 10.1046/j.1365-2486.2003.00668.x CrossRefGoogle Scholar
  37. Kato T, Tang Y, Gu S, Hirota M, Du M, Li Y, Zhao X (2006) Temperature and biomass influences on interannual changes in CO2 exchange in an alpine meadow on the Qinghai–Tibetan Plateau. Glob Change Biol 12:1285–1298. doi: 10.1111/j.1365-2486.2006.01153.x CrossRefGoogle Scholar
  38. Knapp AK, Beier C, Briske DD, Classen AT, Luo Y, Reichstein M, Smith MD, Smith SD, Bell JE, Fay PA, Heisler JL, Leavitt SW, Sherry R, Smith B, Weng E (2008) Consequences of more extreme precipitation regimes for terrestrial ecosystems. Bioscience 58:811–821. doi: 10.1641/B580908 CrossRefGoogle Scholar
  39. Knowles JF (2009) Meteorological controls on the seasonal exchange of water and carbon dioxide from high-elevation alpine tundra at Niwot Ridge, Colorado. MA thesis, Geography, University of Colorado, p 155Google Scholar
  40. Knowles JF, Blanken PD, Williams MW, Chowanski KM (2012) Energy and surface moisture seasonally limit evaporation and sublimation from snow-free alpine tundra. Agric For Meteorol 157:106–115. doi: 10.1016/j.agrformet.2012.01.017 CrossRefGoogle Scholar
  41. Knowles JF, Burns SP, Blanken PD, Monson RK (2014) Fluxes of energy, water, and carbon dioxide from mountain ecosystems at Niwot Ridge, Colorado. Plant Ecol Divers. doi: 10.1080/17550874.2014.904950 [Epub ahead of print]
  42. Körner C (1999) Alpine plant life: functional plant ecology of high mountain ecosystems. Springer, BerlinCrossRefGoogle Scholar
  43. Lee X, Massman W, Law B (2004) Handbook of micrometeorology: a guide for surface flux measurements and analysis. Kluwer Academic Publishers, DordrechtGoogle Scholar
  44. Lee H, Schuur EAG, Vogel JG, Lavoie M, Bhadra D, Staudhammer CL (2011) A spatially explicit analysis to extrapolate carbon fluxes in upland tundra where permafrost is thawing. Glob Change Biol 17:1379–1393. doi: 10.1111/j/1365-2486.2010.02287.x CrossRefGoogle Scholar
  45. Leopold M, Dethier D, Völkel J, Raab T, Rikert TC, Caine N (2008) Using geophysical methods to study the shallow subsurface of a sensitive alpine environment, Niwot Ridge, Colorado Front Range, USA. Arct Antarct Alp Res 40:519–530. doi: 10.1657/1523-0430(06-124)[LEOPOLD]2.0.CO;2
  46. Litaor MI, Williams MW, Seastedt TR (2008) Topographic controls on snow distribution, soil moisture, and species diversity of herbaceous alpine vegetation, Niwot Ridge, Colorado. J Geophys Res 113:1–10. doi: 10.1029/2007JG000419 Google Scholar
  47. Liu W, Zhang Z, Wan S (2009) Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland. Glob Change Biol 15:184–195. doi: 10.1111/j.1365-2486.2008.01728.x CrossRefGoogle Scholar
  48. Lloyd J, Taylor JA (1994) On the temperature dependence of soil respiration. Funct Ecol 8:315–323CrossRefGoogle Scholar
  49. McGlynn BL, Seibert J (2003) Distributed assessment of contributing area and riparian buffering along stream networks. Water Resour Res 39:1–7. doi: 10.1029/2002WR001521 Google Scholar
  50. Meier CL, Bowman WD (2008) Links between plant litter chemistry, species diversity, and below-ground ecosystem function. Proc Natl Acad Sci 105:19,780–19, 785. doi: 10.1073/pnas.0805600105
  51. Mills RTE, Gavazov KS, Spiegelberger T, Johnson D, Buttler A (2014) Diminished soil functions occur under simulated climate change in a sup-alpine pasture, but heterotrophic temperature sensitivity indicates microbial resilience. Sci Total Environ 473–474:465–472. doi: 10.1016/j.scitotenv.2013.12.071 CrossRefGoogle Scholar
  52. Moyano FE, Vasilyeva N, Bouckaert L, Cook F, Craine J, Curiel Yuste J, Don A, Epron D, Formanek P, Franzluebbers A, Ilstedt U, Kätterer T, Orchard V, Reichstein M, Rey A, Ruamps L, Subke J-A, Thomsen IK, Chenu C (2012) The moisture response of soil heterotrophic respiration: interaction with soil properties. Biogeosciences 9:1173–1182. doi: 10.5194/bg-9-1173-2012 CrossRefGoogle Scholar
  53. Moyano FE, Manzoni S, Chenu C (2013) Responses of soil heterotrophic respiration to moisture availability: an exploration of processes and models. Soil Biol Biochem 59:72–85. doi: 10.1016/j.soilbio.2013.01.002 CrossRefGoogle Scholar
  54. Moyes AB, Bowling DR (2012) Interannual variation in seasonal drivers of soil respiration in a semi-arid Rocky Mountain meadow. Biogeochemistry 113:683–697. doi: 10.1007/s10533-012-9797-x CrossRefGoogle Scholar
  55. Nadelhoffer KJ, Giblin AE, Shaver GR, Laundre JA (1991) Effects of temperature and substrate quality on element mineralization in 6 arctic soils. Ecology 72:242–253. doi: 10.2307/1938918 CrossRefGoogle Scholar
  56. Nemali KS, Montesano F, Dove SK, van Iersel MW (2007) Calibration and performance of moisture sensors in soilless substrates: ECH2O and theta probes. Sci Hortic 112:227–234. doi: 10.1016/j.scienta.2006.12.013 CrossRefGoogle Scholar
  57. Noy-Meir I (1973) Desert ecosystems: environment and producers. Annu Rev Ecol Syst 4:25–51CrossRefGoogle Scholar
  58. Orchard VA, Cook FJ (1983) Relationship between soil respiration and soil moisture. Soil Biol Biochem 15:447–453CrossRefGoogle Scholar
  59. Pacific VJ, McGlynn BL, Riveros-Iregui DA, Welsch DL, Epstein HE (2008) Variability in soil respiration across riparian–hillslope transitions. Biogeochemistry 91:51–70. doi: 10.1007/s10533-008-9258-8 CrossRefGoogle Scholar
  60. Pacific VJ, McGlynn BL, Riveros-Iregui DA, Epstein HE, Welsch DL (2009) Differential soil respiration responses to changing hydrologic regimes. Water Resour Res 45:1–6. doi: 10.1029/2009WR007721 Google Scholar
  61. Pepin N, Bradley RS, Diaz HF, Baraer M, Caceres EB, Forsythe N, Fowler H, Greenwood G, Hashmi MZ, Liu XD, Miller JR, Ning L, Ohmura A, Palazzi E, Rangwala I, Schoner W, Severskiy I, Shahgedanova M, Wang MB, Williamson SN, Yang DQ (2015) Elevation-dependent warming in mountain regions of the world. Nature Clim Change 5(5):424–430. doi: 10.1038/NCLIMATE2563 CrossRefGoogle Scholar
  62. Potts DL, Huxman TE, Cable JM, English NB, Ignace DD, Eilts JA, Mason MJ, Weltzin JF, Williams DG (2006) Antecedent moisture and seasonal precipitation influence the response of canopy-scale carbon and water exchange to rainfall pulses in a semi-arid grassland. New Phytol 170:849–860. doi: 10.1111/j.1469-8137.2006.01732.x CrossRefGoogle Scholar
  63. Rey A, Petsikos C, Jarvis PG, Grace J (2005) Effect of temperature and moisture on rates of carbon mineralization in a Mediterranean oak forest soil under controlled and field conditions. Eur J Soil Science 56:589–599. doi: 10.1111/j.1365-2389.2004.00699.x CrossRefGoogle Scholar
  64. Risk D, Nickerson N, Phillips CL, Kellman L, Moroni M (2012) Drought alters respired delta 13CO2 from autotrophic, but not heterotrophic soil respiration. Soil Biol Biochem 50:26–32. doi: 10.1016/j.soilbio.2012.01.025 CrossRefGoogle Scholar
  65. Riveros-Iregui DA, McGlynn BL (2009) Landscape structure control on soil CO2 efflux variability in complex terrain: scaling from point observations to watershed scale fluxes. J Geophys Res 114:G02010. doi: 10.1029/2008JG000885 Google Scholar
  66. Riveros-Iregui DA, Emanuel RE, Muth DJ, McGlynn BL, Epstein HE, Welsch DL, Pacific VJ, Wraith JM (2007) Diurnal hysteresis between soil CO2 and soil temperature is controlled by soil water content. Geophys Res Lett 34:1–5. doi: 10.1029/2007GL030938 CrossRefGoogle Scholar
  67. Riveros-Iregui DA, McGlynn BL, Epstein HE, Welsch DL (2008) Interpretation and evaluation of combined measurement techniques for soil CO2 efflux: discrete surface chambers and continuous soil CO2 concentration probes. J Geophys Res 113:G04027. doi: 10.1029/2008JG000811 Google Scholar
  68. Riveros-Iregui DA, McGlynn BL, Emanuel RE, Epstein HE (2012) Complex terrain leads to bidirectional responses of soil respiration to inter-annual water availability. Glob Change Biol 18:749–756. doi: 10.1111/j.1365-2486.2011.02556.x CrossRefGoogle Scholar
  69. Ryan MG, Law BE (2005) Interpreting, measuring, and modeling soil respiration. Biogeochemistry 73:3–27. doi: 10.1007/s10533-004-5167-7 CrossRefGoogle Scholar
  70. Savage KE, Davidson EA (2001) Interannual variation of soil respiration in two New England forests. Global Biogeochem Cycles 15:337–350. doi: 10.1029/1999GB001248 CrossRefGoogle Scholar
  71. Schimel DS, Kittel TGF, Knapp AK, Seastedt TR, Parton WJ, Brown VB (1991) Physiological interactions along resource gradients in a tallgrass prairie. Ecology 72:672–684. doi: 10.2307/2937207 CrossRefGoogle Scholar
  72. Schimel DS, Braswell BH, Holland EA, McKeown R, Ojima DS, Painter TH, Parton WJ, Townsend AR (1994) Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils. Global Biogeochem Cycles 8:279–293. doi: 10.1029/94GB00993 CrossRefGoogle Scholar
  73. Schuur EAG, Trumbore SE (2006) Partitioning sources of soil respiration in boreal black spruce forest using radiocarbon. Glob Change Biol 12:165–176. doi: 10.1111/j.1365-2486.2005.01066.x CrossRefGoogle Scholar
  74. Schwinning S, Sala OE (2004) Hierarchy of responses to resource pulses in arid and semi-arid ecosystems. Oecologia 141:211–220. doi: 10.1007/s00442-004-1520-8 CrossRefGoogle Scholar
  75. Scott D, Billings WD (1964) Effects of environmental factors on standing crop and productivity of an alpine tundra. Ecol Monogr 34:243–270CrossRefGoogle Scholar
  76. Seastedt TR, Bowman WD, Caine N, McKnight D, Townsend AR, Williams MW (2004) The landscape continuum: a model for high-elevation ecosystems. Bioscience 54:111–121. doi: 10.1641/0006-3568(2004)054[0111:TLCAMF]2.0.CO;2
  77. Settele J, Scholes R, Betts R, Bunn SE, Leadley P, Nepstad D, Overpeck JT, Taboada MA (2014) Terrestrial and inland water systems. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate change 2014: impacts, adaptation, and vulnerability. part a: global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, p 153Google Scholar
  78. Skopp J (1990) Steady-state aerobic microbial activity as a function of soil-water content. Soil Sci 54:1619–1625CrossRefGoogle Scholar
  79. Stielstra CM, Lohse KA, Chorover J, McIntosh JC, Barron-Gafford GA, Perdrial JN, Litvak M, Barnard HR, Brooks PD (2015) Climatic and landscape influences on soil moisture are primary determinants of soil carbon fluxes in seasonally snow-covered forest ecosystems. Biogeochemistry 123:447–465. doi: 10.1007/s10533-015-0078-3 CrossRefGoogle Scholar
  80. Suseela V, Conant RT, Wallenstein MD, Dukes JS (2011) Effects of soil moisture on the temperature sensitivity of heterotrophic respiration vary seasonally in an old-field climate change experiment. Glob Change Biol 18:336–348. doi: 10.1111/j.1365-2486.2011.02516.x CrossRefGoogle Scholar
  81. Taylor RV, Seastedt TR (1994) Short- and long-term patterns of soil moisture in alpine tundra. Arct Antarct Alp Res 26:14–20. doi: 10.2307/1551871 CrossRefGoogle Scholar
  82. Trenberth KE (1999) Conceptual framework for changes of extremes of the hydrological cycle with climate change. Clim Change 42:327–339CrossRefGoogle Scholar
  83. Trumbore SE (2006) Carbon respired by terrestrial ecosystems—recent progress and challenges. Glob Change Biol 12:141–153. doi: 10.1111/j.1365-2486.2005.01067.x CrossRefGoogle Scholar
  84. van der Putten WH, Bardgett RD, Bever JD, Bezemer TM, Casper BB, Fukami T, Kardol P, Klironomos JN, Kulmatiski A, Schweitzer JA, Suding KN, Van de Voorde TFJ, Wardle DA (2013) Plant–soil feedbacks: the past, the present and future challenges. J Ecol 101:265–276. doi: 10.1111/1365-2745.12054 CrossRefGoogle Scholar
  85. Vaz CMP, Jones S, Meding M, Tuller M (2013) Evaluation of standard calibration functions for eight electromagnetic soil moisture sensors. Vadose Zone J 12:1–16. doi: 10.2136/vzj2012.0160 CrossRefGoogle Scholar
  86. Voltz M, Webster R (1990) A comparison of kriging, cubic splines and classification for predicting soil properties from sample information. J Soil Sci 41:473–490CrossRefGoogle Scholar
  87. Walker MD, Walker DA, Theodose TA, Webber PJ (2001) The vegetation: hierarchical species-environment relationships. In: Bowman WD, Seastedt TR (eds) Structure and function of an alpine ecosystem: Niwot Ridge, Colorado. Oxford University Press, New York, pp 99–127Google Scholar
  88. Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633. doi: 10.1126/science.1094875 CrossRefGoogle Scholar
  89. West AE, Brooks PD, Fisk MC, Smith LK, Holland EA, Jaeger CH III, Babcock S, Lai RS, Schmidt SK (1999) Landscape patterns of CH4 fluxes in an alpine tundra ecosystem. Biogeochemistry 45:243–264. doi: 10.1023/A:1006130911046 Google Scholar
  90. Williams MW, Bardsley T, Rikkers M (1998) Overestimation of snow depth and inorganic nitrogen wetfall using NADP data, Niwot Ridge, Colorado. Atmos Environ 32:3827–3833CrossRefGoogle Scholar
  91. Williams MW, Losleben MV, Hamann HB (2002) Alpine areas in the Colorado Front Range as monitors of climate change and ecosystem response. Geogr Rev 92:180–191CrossRefGoogle Scholar
  92. Williams MW, Helmig D, Blanken P (2009) White on green: under-snow microbial processes and trace gas fluxes through snow, Niwot Ridge, Colorado Front Range. Biogeochemistry 95:1–12. doi: 10.1007/s10533-009-9330-z CrossRefGoogle Scholar
  93. Wood TE, Detto M, Silver WL (2013) Sensitivity of soil respiration to variability in soil moisture and temperature in a humid tropical forest. PLoS One 8:e80965. doi: 10.1371/journal.pone.0080965 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of GeographyUniversity of ColoradoBoulderUSA
  2. 2.Institute of Arctic and Alpine ResearchUniversity of ColoradoBoulderUSA

Personalised recommendations