, Volume 123, Issue 1–2, pp 265–283 | Cite as

Natural and anthropogenic processes contributing to metal enrichment in surface soils of central Pennsylvania

  • A. M. L. KraepielEmail author
  • A. L. Dere
  • E. M. Herndon
  • S. L. Brantley


Metals in soils may positively or negatively affect plants as well as soil micro-organisms and mesofauna, depending on their abundance and bioavailability. Atmospheric deposition and biological uplift commonly result in metal enrichment in surface soils, but the relative importance of these processes is not always resolved. Here, we used an integrated approach to study the cycling of phosphorus and a suite of metals from the soil to the canopy (and back) in a temperate watershed. The behavior of elements in these surface soils fell into three categories. First, Al, Fe, V, Co, and Cr showed little to no enrichment in the top soil layers, and their concentrations were determined primarily by soil production fluxes with little influence of either atmospheric inputs or biological activity. Second, P, Cu, Zn and Cd were moderately enriched in surface soils due to a combination of atmospheric deposition and biological uplift. Among the metals we studied, Cu, Zn and Cd concentrations in surface soils were the most sensitive to changes in atmospheric deposition fluxes. Finally, Mo and Mn showed strong enrichment in the top soil layer that could not be explained strictly by either current atmospheric deposition or biological recycling processes, but may reflect both their unique chemistry and remnants of past anthropogenic fluxes. Mn has a long residence time in the soil partly due to intense biological uplift that retains Mn in the top soil layer. Mo, in spite of the high solubility of molybdate, remains in the soil because of strong binding to natural organic matter. This study demonstrates the need to consider simultaneously the vegetation and the soils to understand elemental distribution within soil profiles as well as cycling within watersheds.


Metal Soils Biological uplift Atmospheric deposition Pollution 



This study was supported by National Science Foundation (NSF) Grant GG-1024553. A. Dere received additional support from NSF GK-12: CarbonEARTH Grant EHR-0947962. The authors acknowledge K. Gaines, J. Wubbels, L. Smith and J. Kissel for green leaf and leaf litter collection and chemical analysis. We also acknowledge the Fall 2009 GEOSC 413 class at Penn State for their work collecting and analyzing samples at the SSHO as well as W. Castro, H. Gong, L. Liermann and J. Williams for analytical assistance. This work was facilitated by NSF Critical Zone Observatory program Grants to CJD (EAR 07-25019) and SLB (EAR 12-39285, EAR 13-31726). This research was conducted in Penn State’s Stone Valley Forest, which is supported and managed by the Penn State’s Forestland Management Office in the College of Agricultural Sciences.

Supplementary material

10533_2015_68_MOESM1_ESM.docx (63 kb)
Supplementary material 1 (DOCX 62 kb)


  1. Alloway BJ (1995) Heavy metals in soils. Springer Science, BerlinCrossRefGoogle Scholar
  2. Amundson R, Richter DD, Humphreys GS, Jobbagy EG, Gaillardet J (2007) Coupling between biota and earth materials in the Critical Zone. Elements 3:327–332. doi: 10.2113/Gselements.3.5.327 CrossRefGoogle Scholar
  3. Anderson SP, Dietrich WE, Brimhall GH (2002) Weathering profiles, mass-balance analysis, and rates of solute loss: linkages between weathering and erosion in a small, steep catchment. Geol Soc Am Bull 114:1143–1158Google Scholar
  4. Barron AR, Wurzburger N, Bellenger JP, Wright SJ, Kraepiel AML, Hedin LO (2009) Molybdenum limitation of asymbiotic nitrogen fixation in tropical forest soils. Nat Geosci 2:42–45. doi: 10.1038/ngeo366 CrossRefGoogle Scholar
  5. Brantley SL, Lebedeva M (2011) Learning to read the chemistry of regolith to understand the critical zone. Annu Rev Earth Planet Sci 39(39):387–416. doi: 10.1146/Annurev-Earth-040809-152321 CrossRefGoogle Scholar
  6. Brantley SL, White AF (2009) Approaches to modeling weathered regolith. Thermodyn Kinet Water-Rock Interact 70:435–484. doi: 10.2138/Rmg.2009.70.10 Google Scholar
  7. Brimhall GH, Dietrich WE (1987) Constitutive mass balance relations between chemical-composition, volume, density, porosity, and strain in metasomatic hydrochemical systems-results on weathering and pedogenesis. Geochim Cosmochim Acta 51:567–587. doi: 10.1016/0016-7037(87)90070-6 CrossRefGoogle Scholar
  8. Chappaz A, Lyons TW, Gordon GW, Anbar AD (2012) isotopic fingerprints of anthropogenic molybdenum in lake sediments. Environ Sci Technol 46:10934–10940. doi: 10.1021/Es3019379 CrossRefGoogle Scholar
  9. Darnajoux R, Constantin J, Miadlikowska J, Lutzoni F, Bellenger JP (2014) Rapid report is vanadium a biometal for boreal cyanolichens? New Phytol 202:765–771. doi: 10.1111/Nph.12777 CrossRefGoogle Scholar
  10. Dijkstra FA, Smits MM (2002) Tree species effects on calcium cycling: the role of calcium uptake in deep soils. Ecosystems 5:385–398. doi: 10.1007/S10021-001-0082-4 CrossRefGoogle Scholar
  11. Dzombak DA, Morel FMM (1990) Surface complexation modelling: hydrous ferric oxide. Wiley-InterscienceGoogle Scholar
  12. Eissenstat D et al (2013) Susquehanna Shale Hills Critical Zone Observatory Tree Survey (2008). Integrated Earth Data Applications (IEDA). doi: 10.1594/IEDA/100268
  13. Fernando DR, Mizuno T, Woodrow IE, Baker AJM, Collins RN (2010) Characterization of foliar manganese (Mn) in Mn (hyper)accumulators using X-ray absorption spectroscopy. New Phytol 188:1014–1027. doi: 10.1111/J.1469-8137.2010.03431.X
  14. Gelinas Y, Lucotte M, Schmit JP (2000) History of the atmospheric deposition of major and trace elements in the industrialized St, Lawrence Valley, Quebec, Canada. Atmos Environ 34:1797–1810. doi: 10.1016/S1352-2310(99)00336-2 CrossRefGoogle Scholar
  15. Gupta UC (1997) Molybdenum in agriculture. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  16. Hernandez L, Probst A, Probst JL, Ulrich E (2003) Heavy metal distribution in some French forest soils: evidence for atmospheric contamination. Sci Total Environ 312:195–219. doi: 10.1016/S0048-9697(03)00223-7 CrossRefGoogle Scholar
  17. Herndon EM, Brantley SL (2011) Movement of manganese contamination through the critical zone. Appl Geochem 26:S40–S43. doi: 10.1016/J.Apgeochem.03.024 CrossRefGoogle Scholar
  18. Herndon EM, Jin L, Brantley SL (2011) Soils reveal widespread manganese enrichment from industrial inputs. Environ Sci Technol 45:241–247. doi: 10.1021/Es102001w
  19. Herndon EM, Martinez CE, and Brantley SL (2014) Spectroscopic (XANES/XRF) characterization of contaminant manganese cycling in a temperate watershed. Biogeochemistry 121:505–517Google Scholar
  20. Hodkinson BP et al (2014) Lichen-symbiotic cyanobacteria associated with Peltigera have an alternative vanadium-dependent nitrogen fixation system. Eur J Phycol 49:11–19. doi: 10.1080/09670262.2013.873143 CrossRefGoogle Scholar
  21. Jean ME, Cassar N, Setzer C, Bellenger JP (2012) Short-term N2 fixation kinetics in a moss-associated cyanobacteria. Environ Sci Technol 46:8667–8671CrossRefGoogle Scholar
  22. Jin L, Ravella R, Ketchum B, Bierman PR, Heaney P, White T, Brantley SL (2010) Mineral weathering and elemental transport during hillslope evolution at the Susquehanna/Shale Hills Critical Zone Observatory. Geochim Cosmochim Acta 74:3669–3691. doi: 10.1016/j.gca.2010.03.036 CrossRefGoogle Scholar
  23. Jobbagy EG, Jackson RB (2001) The distribution of soil nutrients with depth: global patterns and the imprint of plants. Biogeochemistry 53:51–77. doi: 10.1023/A:1010760720215 CrossRefGoogle Scholar
  24. Jobbagy EG, Jackson RB (2004) The uplift of soil nutrients by plants: biogeochemical consequences across scales. Ecology 85:2380–2389. doi: 10.1890/03-0245 CrossRefGoogle Scholar
  25. Kaye MW, Smith L, Eissenstat D, Wubbles J, Adams T, Osborne J (2015) Susquehanna Shale Hills Critical Zone Observatory Tree Survey (2012 updates). EarthChem Library. doi: 10.1594/IEDA/100516
  26. Kaye MW, Smith L, Eissenstat D (2016) Susquehanna Shale Hills Litter and Dendroband Data. EarthChem Library. doi: 10.1594/IEDA/100517
  27. Kinkle BK, Angle JS, Keyser HH (1987) Long-term effects of metal-rich sewage-sludge application on soil populations of Bradyrhizobium-japonicum. Appl Environ Microbiol 53:315–319Google Scholar
  28. Kobler J, Fitz WJ, Dirnbock T, Mirtl M (2009) Soil type affects migration pattern of airborne Pb and Cd under a spruce-beech forest of the UN-ECE integrated monitoring site Zobelboden. Austria. Environ Pollut 158:849–854. doi: 10.1016/J.Envpol.09.026 CrossRefGoogle Scholar
  29. Kuntz BW, Rubin S, Berkowitz B, Singha K (2011) Quantifying solute transport at the shale hills critical zone observatory. Vadose Zone J 10:843–857. doi: 10.2136/vzj2010.0130 CrossRefGoogle Scholar
  30. Lin H (2006) Temporal stability of soil moisture spatial pattern and subsurface preferential flow pathways in the shale hills catchment. Vadose Zone J 5:317–340. doi: 10.2136/vzj2005.0058 CrossRefGoogle Scholar
  31. Lin HS, Kogelmann W, Walker C, Bruns MA (2006) Soil moisture patterns in a forested catchment: a hydropedological perspective. Geoderma 131:345–368. doi: 10.1016/j.geoderma.2005.03.013 CrossRefGoogle Scholar
  32. Lytle CM, Lytle FW, Smith BN (1996) Use of XAS to determine the chemical speciation of bioaccumulated manganese in Potamogeton pectinatus. J Environ Qual 25:311–316CrossRefGoogle Scholar
  33. Ma L, Chabaux F, Pelt E, Blaes E, Jin L, Brantley S (2010) Regolith production rates calculated with uranium-series isotopes at Susquehanna/Shale Hills Critical Zone Observatory. Earth Planet Sci Lett 297:211–225. doi: 10.1016/j.epsl.2010.06.022 CrossRefGoogle Scholar
  34. Ma L, Konter J, Herndon E, Jin L, Steinhoefel G, Sanchez D, Brantley SL (2015) Quantifying an early signature of the industrial revolution from lead concentrations and isotopes in soils of Pennsylvania, USA. Anthropocene. doi: 10.1016/j.ancene.2014.12.003
  35. Meij R, Winkel HT (2007) The emissions of heavy metals and persistent organic pollutants from modern coal-fired power stations. Atmos Environ 41:9262–9272. doi: 10.1016/j.atmosenv.2007.04.042 CrossRefGoogle Scholar
  36. Naithani KJ, Baldwin DC, Gaines KP, Lin H, Eissenstat DM (2013) Spatial distribution of tree species governs the spatio-temporal interaction of leaf area index and soil moisture across a forested landscape. PLoS One 8:e58704CrossRefGoogle Scholar
  37. Nriagu JO (1990) Global metal pollution-poisoning the biosphere. Environment 32:7–33CrossRefGoogle Scholar
  38. Querol X et al (2007) Source origin of trace elements in PM from regional background, urban and industrial sites of Spain. Atmos Environ 41:7219–7231. doi: 10.1016/J.Atmosenv.05.022 CrossRefGoogle Scholar
  39. Raven JA (1990) Predictions of Mn and Fe use efficiencies of phototrophic growth as a function of light availability for growth and of C assimilation pathway. New Phytol 116:1–18. doi: 10.1111/J.1469-8137.1990.Tb00505.X CrossRefGoogle Scholar
  40. Reimann C, Englmaier P, Flem B, Gough L, Lamothe P, Nordgulen O, Smith D (2008) Geochemical gradients in soil O-horizon samples from southern Norway: natural or anthropogenic? Appl Geochem 24:62–76. doi: 10.1016/J.Apgeochem.11.021 CrossRefGoogle Scholar
  41. Roy M, McDonald LM (2013) Metal uptake in plants and health risk assessments in metal-contaminated smelter soils. Land Degrad Dev. doi: 10.1002/ldr.2237 Google Scholar
  42. Silvester WB (1989) Molybdenum limitation of asymbiotic nitrogen fixation in forests of Pacific Northwest America. Soil Biol Biochem 21:283–289CrossRefGoogle Scholar
  43. Smith LA (2013) Aboveground carbon distribution across a temperate watershed. M.S. Thesis, The Pennsylvania State University, University ParkGoogle Scholar
  44. Sucharova J et al (2012) Top-/bottom-soil ratios and enrichment factors: what do they really show? Appl Geochem 27:138–145. doi: 10.1016/J.Apgeochem.09.025 CrossRefGoogle Scholar
  45. Sunda WG, Huntsman SA (1996) Antagonisms between cadmium and zinc toxicity and manganese limitation in a coastal diatom. Limnol Oceanogr 41:373–387CrossRefGoogle Scholar
  46. Teutsch N, Erel Y, Halicz L, Chadwick OA (1999) The influence of rainfall on metal concentration and behavior in the soil. Geochim Cosmochim Acta 63:3499–3511. doi: 10.1016/S0016-7037(99)00152-0 CrossRefGoogle Scholar
  47. Tyler G (2004) Vertical distribution of major, minor, and rare elements in a Haplic Podzol. Geoderma 119(277–290):2003. doi: 10.1016/J.Geoderma.08.005 Google Scholar
  48. West N, Kirby E, Bierman P, Slingerland R, Ma L, Rood D, Brantley S (2013) Regolith production and transport at the Susquehanna Shale Hills Critical Zone Observatory, Part 2: insights from meteoric Be-10. J Geophys Res-Earth Surf 118:1877–1896. doi: 10.1002/Jgrf.20121 CrossRefGoogle Scholar
  49. White AF, Schulz MS, Vivit DV, Bullen TD (2011) Fitzpatrick J (2012) The impact of biotic/abiotic interfaces in mineral nutrient cycling: a study of soils of the Santa Cruz chronosequence. Calif Geochim Cosmochim Acta 77:62–85. doi: 10.1016/J.Gca.10.029 CrossRefGoogle Scholar
  50. Wichard T, Mishra B, Myneni SCB, Bellenger JP, Kraepiel AML (2009) Storage and bioavailability of molybdenum in soils increased by organic matter complexation. Nat Geosci 2:625–629. doi: 10.1038/ngeo589 CrossRefGoogle Scholar
  51. Wubbels JK (2010) Tree species distribution in relation to stem hydraulic traits and soil moisture in a mixed hardwood forest in Central Pennsylvania. M.S. Thesis, The Pennsylvania State University, University ParkGoogle Scholar
  52. Wurzburger N, Bellenger JP, Kraepiel AML, Hedin LO (2012) Molybdenum and phosphorus interact to constrain asymbiotic nitrogen fixation in tropical forests. PLoS One 7:e33710CrossRefGoogle Scholar
  53. Xu Y, Morel FM (2013) Cadmium in marine phytoplankton. Met Ions Life Sci 11:509–528. doi: 10.1007/978-94-007-5179-8_16 CrossRefGoogle Scholar
  54. Xu Y, Feng L, Jeffrey PD, Shi YG, Morel FMM (2008) Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms. Nature 452:56–61. doi: 10.1038/Nature06636 CrossRefGoogle Scholar
  55. Yi SM et al (2006) Atmospheric dry deposition of trace elements measured around the urban and industrially impacted NY–NJ harbor. Atmos Environ 40:6626–6637. doi: 10.1016/J.Atmosenv.05.062 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • A. M. L. Kraepiel
    • 1
    Email author
  • A. L. Dere
    • 2
    • 3
  • E. M. Herndon
    • 2
    • 4
  • S. L. Brantley
    • 2
  1. 1.Department of ChemistryPrinceton UniversityPrincetonUSA
  2. 2.Department of Geosciences and Earth and Environmental Systems InstitutePennsylvania State UniversityUniversity ParkUSA
  3. 3.Department of Geography/GeologyUniversity of Nebraska at OmahaOmahaUSA
  4. 4.Department of GeologyKent State UniversityKentUSA

Personalised recommendations