, Volume 120, Issue 1–3, pp 259–278 | Cite as

Dust mediated transfer of phosphorus to alpine lake ecosystems of the Wind River Range, Wyoming, USA

  • J. Brahney
  • A. P. Ballantyne
  • P. Kociolek
  • S. Spaulding
  • M. Otu
  • T. Porwoll
  • J. C. Neff


Alpine lakes receive a large fraction of their nutrients from atmospheric sources and are consequently sensitive to variations in both the amount and chemistry of atmospheric deposition. In this study we explored the spatial changes in lake water chemistry and biology along a gradient of dust deposition in the Wind River Range, Wyoming. Regional differences were explored using the variation in bulk deposition, lake water, sediment, and bedrock geochemistry and catchment characteristics. Dust deposition rates in the Southwestern region averaged 3.34 g m−2 year−1, approximately three times higher than deposition rates in the Northwestern region (average 1.06 g m−2 year−1). Dust-P deposition rates ranged from 87 µg P m2 day−1 in the Northwestern region to 276 µg P m2 day−1 in the Southwestern region. Subalpine and alpine lakes in the Southwestern region had greater total phosphorus (TP) concentrations (5–13 µg L−1) and greater sediment phosphorus (SP) concentrations (2–5 mg g−1) than similar lakes elsewhere in the region (1–8 µg L−1 TP, 0.5–2 mg g−1 SP). Lake phosphorus concentrations were related to dissolved organic carbon (DOC) across vegetation gradients, but related to the percent of bare rock, catchment area to lake area, and catchment steepness across dust deposition gradients. Modern phytoplankton and zooplankton biomasses were two orders of magnitude greater in the Southwest than in the Northwest, and alpine lakes in the Southwest had a unique diatom species assemblage with relatively higher concentrations of Asterionella formosa, Pseudostaurosirapseudoconstruens, and Pseudostaurosira brevistriata. These results suggests that catchment controls on P export to lakes (i.e. DOC) are overridden in dominantly bare rock basins where poor soils cannot effectively retain dust deposited P.


Atmospheric deposition Dust Phosphorus Alpine lakes Wyoming 

Supplementary material

10533_2014_9994_MOESM1_ESM.doc (418 kb)
Supplementary material 1 (DOC 417 kb)


  1. Allan RJ, Williams JDH, Joshi SR, Warwick WF (1980) Historical changes and relationship to internal loading of sediment phosphorus forms in hypertrophic prairie lakes. J Environ Qual 9(2):199–206. doi:10.2134/jeq1980.00472425000900020007x CrossRefGoogle Scholar
  2. Barker PA, Pates JM, Payne RJ, Healey RM (2005) Changing nutrient levels in Grasmere, English Lake District, during recent centuries. Freshw Biol 50(12):1971–1981CrossRefGoogle Scholar
  3. Birkeland PW, Burke RM, Benedict JB (1989) Pedogenic gradients for iron and aluminum accumulation and phosphorus depletion in arctic and alpine soils as a function of time and climate. Quat Res 32(2):193–204. doi:10.1016/0033-5894(89)90075-6 CrossRefGoogle Scholar
  4. Bradshaw EG, Rasmussen P, Nielsen H, Anderson NJ (2005) Mid- to late-Holocene land-use change and lake development at Dallund Sø, Denmark: trends in lake primary production as reflected by algal and macrophyte remains. The Holocene 15(8):1130–1142. doi:10.1191/0959683605hl885rp CrossRefGoogle Scholar
  5. Brahney J (2013) The influence of anthropogenic dust emissions on precipitation chemistry and lake biogeochemistry. PhD Thesis, University of Colorado at BoulderGoogle Scholar
  6. Brahney J, Ballantyne AP, Sievers C, Neff JC (2013) Increasing Ca2+ deposition in the western US: the role of mineral aerosols. Aeolian Res 10:77–87. doi:10.1016/j.aeolia.2013.04.003 CrossRefGoogle Scholar
  7. Camarero L, Catalán J (2012) Atmospheric phosphorus deposition may cause lakes to revert from phosphorus limitation back to nitrogen limitation. Nat Commun 3:118CrossRefGoogle Scholar
  8. Camarero L, Rogora M, Mosello R, Anderson NJ, Barbieri A, Botev I, Kernan M, Kopáček J, Korhola A, Lotter AF, Muri G, Postolache C, StuchlÍK E, Thies H, Wright RF (2009) Regionalisation of chemical variability in European mountain lakes. Freshw Biol 54(12):2452–2469. doi:10.1111/j.1365-2427.2009.02296.x CrossRefGoogle Scholar
  9. Caravaca F, Lax A, Albaladejo J (1999) Organic matter, nutrient contents and cation exchange capacity in fine fractions from semiarid calcareous soils. Geoderma 93(3–4):161–176CrossRefGoogle Scholar
  10. Dahms DE (1993) Mineralogical evidence for eolian contribution to soils of late Quaternary Moraines, Wind River Mountains, Wyoming, USA. Geoderma 59(1–4):175–196CrossRefGoogle Scholar
  11. Dahms DE, Rawlins CL (1996) A two-year record of eolian sedimentation in the Wind River Range, Wyoming, USA. Arct Alp Res 28(2):210–216CrossRefGoogle Scholar
  12. Dämmgen U, Erisman JW, Cape JN, Grünhage L, Fowler D (2005) Practical considerations for addressing uncertainties in monitoring bulk deposition. Environ Pollut 134(3):535–548. doi:10.1016/j.envpol.2004.08.013 CrossRefGoogle Scholar
  13. Davis JC (2002) Statistics and data analysis in geology, 3rd edn. Wiley, New YorkGoogle Scholar
  14. DeAngelis M, Gaudichet A (1991) Saharan dust deposition over Mont Blanc (French Alps) during the last 30 years. Tellus B 43(1):61–75CrossRefGoogle Scholar
  15. Enache M, Prairie YT (2002) WA-PLS diatom-based pH, TP and DOC inference models from 42 lakes in the Abitibi clay belt area (Québec, Canada). J Paleolimnol 27(2):151–171CrossRefGoogle Scholar
  16. EPA (1996) Method 3052: “Microwave assisted acid digestion of siliceous and organically based matrices.” Test methods for evaluating solid waste. Environmental Protection AgencyGoogle Scholar
  17. Field JP, Belnap J, Breshears DD, Neff JC, Okin GS, Whicker JJ, Painter TH, Rave S, Reheis MC, Reynolds RL (2009) The ecology of dust. Front Ecol Environ 8(8):423–430CrossRefGoogle Scholar
  18. Grenon J, Svalberg T, Porwoll T, Story M (2010) Lake and bulk sampling chemistry, NADP, and IMPROVE air quality data analysis on the Bridger-Teton National Forest (USFS Region 4). General Technical Report RMRS-GTR-248WWW. United States Department of Agriculture/Forest Service, Rocky Mountain Research Station Publishing Services, Fort Collins, CO, USAGoogle Scholar
  19. Grousset FE, Biscaye PE (2005) Tracing dust sources and transport patterns using Sr, Nd and Pb isotopes. Chem Geol 222(3):149–167CrossRefGoogle Scholar
  20. Homyak PM, Sickman JO, Melack JM (2014) Pools, transformations, and sources of P in high-elevation soils: implications for nutrient transfer to Sierra Nevada lakes. Geoderma 217–218:65–73. doi:10.1016/j.geoderma.2013.11.003 CrossRefGoogle Scholar
  21. Kamenik C, Roland S, Kum G, Roland P (2001) The influence of catchment characteristics on the water chemistry of mountain lakes. Arct Antarct Alp Res 33(4):404–409CrossRefGoogle Scholar
  22. Karlsson J, Jonsson A, Jansson M (2005) Productivity of high-latitude lakes: climate effect inferred from altitude gradient. Glob Change Biol 11(5):710–715. doi:10.1111/j.1365-2486.2005.00945.x CrossRefGoogle Scholar
  23. Karst-Riddoch TL, Malmquist HJ, Smol JP (2009) Relationships between freshwater sedimentary diatoms and environmental variables in Subarctic Icelandic lakes. Fundam Appl Limnol/Arch Hydrobiol 175(1):1–28CrossRefGoogle Scholar
  24. Koesterer ME, Frost CD, Frost BR, Hulsebosch TP, Bridgwater D, Worl RG (1987) Development of the archean crust in the medina mountain area, Wind River Range, Wyoming (USA). Precambrian Res 37(4):287–304CrossRefGoogle Scholar
  25. Konietschke R, Hothorn LA, Brunner E (2012) Rank-based multiple test procedures and simultaneous confidence intervals. Electron J Stat 6:738–759Google Scholar
  26. Kopáček J, Hejzlar J, Vrba J, Stuchlik E (2011) Phosphorus loading of mountain lakes: terrestrial export and atmospheric deposition. Limnol Oceanogr 56(4):1343–1354CrossRefGoogle Scholar
  27. Krammer K, Lange-Bertalot H (1985) Naviculaceae. Bibl Diatomol 9:1–230Google Scholar
  28. Krammer K, Lange-Bertalot H (1986) Bacillariophyceae. 1. Teil: Naviculaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhaur D (eds) Süsswasser flora von Mitteleuropa, vol 2/1. Fischer, Stuttgart, pp 1–876Google Scholar
  29. Krammer K, Lange-Bertalot H (1988) Bacillariophyceae. 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhaur D (eds) Süsswasserflora von Mitteleuropa, vol 2/2. Fischer, Stuttgart, pp 1–596Google Scholar
  30. Krammer K, Lange-Bertalot H (1991) Bacillariophyceae. 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhaur D (eds) Süsswasserflora von Mitteleuropa, vol 2/3. Fischer, Stuttgart, pp 1–576Google Scholar
  31. Krammer K, Lange-Bertalot H (2000) Bacillariophyceae. Part 5. English and French Translation of the Keys. In: Ettl H, Gerloff J, Heynig H, Mollenhaur D (eds) Süsswasser flora von Mitteleuropa, vol 2/5. Fischer, StuggartGoogle Scholar
  32. Kufmann C (2006) Measurement and climatic control of eolian sedimentation on snow cover surface in the northern Calcareous Alps (Wetterstein-, Karwendel and Berchtesgadener Alps, Germany). Z Geomorphol 50(2):245–268Google Scholar
  33. Lawrence CR, Neff JC (2009) The contemporary physical and chemical flux of aeolian dust: a synthesis of direct measurements of dust deposition. Chem Geol. doi:10.1016/j.chemgeo.2009.1002.1005 Google Scholar
  34. Lawrence CR, Painter TH, Landry CC, Neff JC (2010) Contemporary geochemical composition and flux of aeolian dust to the San Juan Mountains, Colorado, United States. J Geophys Res 115. doi:10.1029/2009JG001077
  35. Leys JF, McTainsh GH (1999) Dust and nutrient deposition to riverine environments of south-eastern Australia. Z Geomorphol Suppl 116:59–76Google Scholar
  36. Li J, Okin GS, Epstein HE (2009) Effects of enhanced wind erosion on surface soil texture and characteristics of windblown sediments. J Geophys Res Biogeosci 114(G2):G02003. doi:10.1029/2008JG000903 CrossRefGoogle Scholar
  37. Love JD (1968) Creation of the Teton landscape. Grand Teton Natural History Association, MooseGoogle Scholar
  38. LTER (2013) Kiowa Environmental Chemistry Laboratory.
  39. Maberly SC, King L, Gibson CE, May L, Jones RI, Dent MM, Jordan C (2003) Linking nutrient limitation and water chemistry in upland lakes to catchment characteristics. Hydrobiologia 506–509(1):83–91CrossRefGoogle Scholar
  40. Mahowald NM, Kloster S, Engelstaedter S, Moore JK, Mukhopadhyay S, McConnell JR, Albani S, Doney SC, Bhattacharya A, Curran MAJ, Flanner MG, Hoffman FM, Lawrence DM, Lindsay K, Mayewski PA, Neff J, Rothenberg D, Thomas E, Thornton PE, Zender CS (2010) Observed 20th century desert dust variability: impact on climate and biogeochemistry. Atmos Chem Phys 10(22): 10875–10893Google Scholar
  41. Marx SK, Kamber BS, McGowan HA (2005) Provenance of long-travelled dust determined with ultra-trace-element composition: a pilot study with samples from New Zealand glaciers. Earth Surf Proc Land 30(6):699–716. doi:10.1002/esp.1169 CrossRefGoogle Scholar
  42. McMurray J, Roberts D, Fenn M, Geiser L, Jovan S (2013) Using epiphytic lichens to monitor nitrogen deposition near natural gas drilling operations in the Wind River Range, WY, USA. Water Air Soil Pollut 224(3):1–14. doi:10.1007/s11270-013-1487-3 CrossRefGoogle Scholar
  43. Meszaros E (1966) On the origin and composition of atmospheric calcium compounds. Tellus 18(2–3):262–265CrossRefGoogle Scholar
  44. Michel T, Saros J, Interlandi S, Wolfe A (2006) Resource requirements of four freshwater diatom taxa determined by in situ growth bioassays using natural populations from alpine lakes. Hydrobiologia 568(1):235–243CrossRefGoogle Scholar
  45. Miller S (2009) Aquatic invertebrate report for samples collected by USFS Bridger-Teton National Forest. Utah State UniversityGoogle Scholar
  46. Morales-Baquero R, Pulido-Villena E, Reche I (2006) Atmospheric inputs of phosphorus and nitrogen to the southwest Mediterranean region: biogeochemical responses of high mountain lakes. Limnol Oceanogr 51(2):830–837CrossRefGoogle Scholar
  47. Morselli L, Olivieri B, Passarini F (2003) Dissolved and particulate fractions of heavy metals in wet and dry atmospheric deposition in Bologna, Italy. Environ Pollut 124:457–469CrossRefGoogle Scholar
  48. Müller B, Lotter AF, Sturm M, Ammann A (1998) Influence of catchment quality and altitude on the water and sediment composition of 68 small lakes in Central Europe. Aquat Sci 60(4):316–337. doi:10.1007/s000270050044 CrossRefGoogle Scholar
  49. Neff JC, Reynolds RL, Belnap J, Lamothe P (2005) Multi-decadal impacts of grazing on soil physical and biogeochemical properties in southeast Utah. Ecol Appl 15(1):87–95CrossRefGoogle Scholar
  50. Neff JC, Ballantyne AP, Farmer GL, Mahowald NM, Conroy JL, Landry CC, Overpeck JT, Painter TH, Lawrence CR, Reynolds RL (2008) Increasing eolian dust deposition in the western United States linked to human activity. Nat Geosci 1(3):189–195. doi:10.1038/ngeo133 CrossRefGoogle Scholar
  51. Patrick R, Reimer CW (1966) The diatoms of the United States exclusive of Alaska and Hawaii, Volume 1-Fragilariaceae, Eunotiaceae, Achnanthaceae, Naviculaceae. Academy of Natural Sciences of Philadelphia, Philadelphia, p 688 Google Scholar
  52. NOAA (2014) National Oceanic and Atmospheric Administration climate data online. National Oceanic and Atmospheric Administration.
  53. Prepas EE, Planas D, Gibson JJ, Vitt DH, Prowse TD, Dinsmore WP, Halsey LA, McEachern PM, Paquet S, Scrimgeour GJ, Tonn WM, Paszkowski CA, Wolfstein K (2001) Landscape variables influencing nutrients and phytoplankton communities in Boreal Plain lakes of northern Alberta: a comparison of wetland-and upland-dominated catchments. Can J Fish Aquat Sci 58(7):1286–1299CrossRefGoogle Scholar
  54. Pulido-Villena E, Reche I, Morales-Baquero R (2008) Evidence of an atmospheric forcing on bacterioplankton and phytoplankton dynamics in a high mountain lake. Aquat Sci 70(1):1–9. doi:10.1007/s00027-007-0944-8 CrossRefGoogle Scholar
  55. Pye K, Krinsley DH (1986) Diagenetic carbonate and evaporite minerals in Rotliegend aeolian sandstones of the southern North-Sea—their nature and relationship to secondary porosity development. Clay Miner 21(4):443–457CrossRefGoogle Scholar
  56. Reavie ED, Hall RI, Smol JP (1995) An expanded weighted-averaging model for inferring past total phosphorus concentrations from diatom assemblages in eutrophic British Columbia (Canada) lakes. J Paleolimnol 14(1):49–67CrossRefGoogle Scholar
  57. Reynolds RL, Mordecai JS, Rosenbaum JG, Ketterer ME, Walsh MK, Moser KA (2010) Compositional changes in sediments of subalpine lakes, Uinta Mountains (Utah): evidence for the effects of human activity on atmospheric dust inputs. J Paleolimnol 44(1):161–175CrossRefGoogle Scholar
  58. Rogora M, Mosello R, Marchetto A (2004) Long-term trends in the chemistry of atmospheric deposition in Northwestern Italy: the role of increasing Saharan dust deposition. Tellus B 56(5):426–434CrossRefGoogle Scholar
  59. Rühland K, Priesnitz A, Smol J (2003) Paleolimnological evidence from diatoms for recent environmental changes in 50 lakes across Canadian Arctic treeline. Arct Antarct Alp Res 35(1):110–123CrossRefGoogle Scholar
  60. Saros JE, Michel TJ, Interlandi SJ, Wolfe AP (2005) Resource requirements of Asterionella formosa and Fragilaria crotonensis in oligotrophic alpine lakes: implications for recent phytoplankton community reorganizations. Can J Fish Aquat Sci 62(7):1681–1689CrossRefGoogle Scholar
  61. Sequiera R (1982) Acid rain, an assessment based on acid–base considerations. J Air Pollut Control Assoc 32:241–245CrossRefGoogle Scholar
  62. Sickman JO, Melack JM, Clow DW (2003) Evidence for nutrient enrichment of high-elevation lakes in the Sierra Nevada. Limnol Oceanogr 48(5):1885–1892Google Scholar
  63. Sickman J, Bennett D, Lucero D, Whitmore T, Kenney W (2013) Diatom-inference models for acid neutralizing capacity and nitrate based on 41 calibration lakes in the Sierra Nevada, California, USA. J Paleolimnol 50(2):159–174. doi:10.1007/s10933-013-9711-0 CrossRefGoogle Scholar
  64. Smith EA, Mayfield CI, Wong PTS (1978) Naturally occurring apatite as a source of ortho-phosphate for growth of bacteria and algae. Microb Ecol 4(2):105–117CrossRefGoogle Scholar
  65. Sullivan R (1980) A stratigraphic evaluation of the Eocene rocks of southwestern Wyoming. Geological Survey of Wyoming Report 20Google Scholar
  66. Tanaka TY, Chiba M (2006) A numerical study of the contributions of dust source regions to the global dust budget. Glob Planet Change 52(1–4):88–104. doi:10.1016/j.gloplacha.2006.02.002 CrossRefGoogle Scholar
  67. UDAQ (2009) PM10 Exceptional wind event Lindon monitoring station event date—March 4, 2009. Government Printing Office, Salt Lake CityGoogle Scholar
  68. USDA/FS (2002) Bridger-Teton National Forest wind river mountains air quality monitoring program methods manual. Bridger-Teton National ForestGoogle Scholar
  69. Vicars WC, Sickman JO, Ziemann PJ (2010) Atmospheric phosphorus deposition at a montane site: size distribution, effects of wildfire, and ecological implications. Atmos Environ 44(24):2813–2821. doi:10.1016/j.atmosenv.2010.04.055 CrossRefGoogle Scholar
  70. Wetzel RG (2001) Limnology, lake and river ecosystems, 3rd edn. Academic Press, San DiegoGoogle Scholar
  71. Whitmore TJ (1989) Florida diatom assemblages as indicators of trophic state and pH. Limnol Oceanogr 34(5):882–895CrossRefGoogle Scholar
  72. Wolfe AP, Van Gorp AC, Baron J (2003) Recent ecological and biogeochemical changes in alpine lakes of Rocky Mountain National Park (Colorado, USA): a response to anthropogenic nitrogen deposition. Geobiology 1:153–168CrossRefGoogle Scholar
  73. Wolin JA, Stoermer EF (2005) Response of a Lake Michigan coastal lake to anthropogenic catchment disturbance. J Paleolimnol 33(1):73–94CrossRefGoogle Scholar
  74. WRCC (2014) Wind Rose Snider Basin Wyomig, Jan. 1 1985–Dec. 31 2014.

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • J. Brahney
    • 1
    • 6
  • A. P. Ballantyne
    • 2
  • P. Kociolek
    • 3
  • S. Spaulding
    • 4
  • M. Otu
    • 4
  • T. Porwoll
    • 5
  • J. C. Neff
    • 1
  1. 1.Department of Geological SciencesUniversity of ColoradoBoulderUSA
  2. 2.Department of Ecosystem and Conservation ScienceUniversity of MontanaMissoulaUSA
  3. 3.Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderUSA
  4. 4.Institute of Arctic and Alpine ResearchUniversity of ColoradoBoulderUSA
  5. 5.United States Forest ServiceBridger-Teton National ForestPinedaleUSA
  6. 6.Department of Earth and Environmental SciencesUniversity of British Columbia, OkanaganKelownaCanada

Personalised recommendations