, Volume 119, Issue 1–3, pp 259–273 | Cite as

Environmental dynamics of dissolved black carbon in wetlands

  • Yan Ding
  • Kaelin M. Cawley
  • Catia Nunes da Cunha
  • Rudolf JafféEmail author


Wetlands are ecosystems commonly characterized by elevated levels of dissolved organic carbon (DOC), and although they cover a surface area less than 2 % worldwide, they are an important carbon source representing an estimated 15 % of global annual DOC flux to the oceans. Because of their unique hydrological characteristics, fire can be an important ecological driver in pulsed wetland systems. Consequently, wetlands may be important sources not only of DOC but also of products derived from biomass burning, such as dissolved black carbon (DBC). However, the biogeochemistry of DBC in wetlands has not been studied in detail. The objective of this study is to determine the environmental dynamics of DBC in different fire-impacted wetlands. An intensive, 2-year spatial and temporal dynamics study of DBC in a coastal wetland, the Everglades (Florida) system, as well as one-time sampling surveys for the other two inland wetlands, Okavango Delta (Botswana) and the Pantanal (Brazil), were reported. Our data reveal that DBC dynamics are strongly coupled with the DOC dynamics regardless of location, season or recent fire history. The statistically significant linear regression between DOC and DBC was applied to estimate DBC fluxes to the coastal zone through two main riverine DOC export routes in the Everglades ecosystem. The presence of significant amounts of DBC in these three fire-impacted ecosystems suggests that sub-tropical wetlands could represent an important continental-ocean carrier of combustion products from biomass burning. The discrimination of DBC molecular structure (i.e. aromaticity) between coastal and terrestrial samples, and between samples collected in wet and dry season, suggests that spatially-significant variation in DBC source strength and/or degree of degradation may also influence DBC dynamics.


Wetland Dissolved organic carbon Dissolved black carbon Biomass burning BPCA 



The authors thank N. Mladenov, P. Wolski and staff from the Okavango Research Institute at the University of Botswana, J. A. Ferraz de Lima, Nuno Rodrigues and staff from Pantanal National Park, P. Teixeira de Sousa and staff at the Universidade de Mato Grosso (Brazil), for assistance with field logistics and sample preparation. This work was funded through the National Science Foundation-supported Florida Coastal Everglades Long-term Ecological Research program (DBI-0620409; to RJ), the DOI-NPS funded Everglades Fellowship Program (to KC), and through a contribution from the Southeast Environmental Research Center endowment (G. Barley Chair to RJ). YD thanks the FIU Graduate School for a doctoral evidence acquisition (DEA) fellowship. This is SERC contribution number 653.


  1. Alvarez-Salgado XA, Miller AEJ (1998) Simultaneous determination of dissolved organic carbon and total dissolved nitrogen in seawater by high temperature catalytic oxidation: conditions for precise shipboard measurements. Mar Chem 62(3–4):325–333CrossRefGoogle Scholar
  2. Baker LL, Strawn DG, Rember WC, Sprenke KF (2011) Metal content of charcoal in mining-impacted wetland sediments. Sci Total Environ 409(3):588–594CrossRefGoogle Scholar
  3. Beckage B, Platt WJ (2003) Predicting severe wildfire years in the Florida Everglades. Front Ecol Environ 1(5):235–239CrossRefGoogle Scholar
  4. Bergamaschi BA, Krabbenhoft DP, Aiken GR, Patino E, Rumbold DG, Orem WH (2012) Tidally driven export of dissolved organic carbon, total mercury, and methylmercury from a mangrove-dominated estuary. Environ Sci Technol 46(3):1371–1378CrossRefGoogle Scholar
  5. Bird MI, Moyo C, Veenendaal EM, Lloyd J, Frost P (1999) Stability of elemental carbon in a savanna soil. Glob Biogeochem Cy 13(4):923–932CrossRefGoogle Scholar
  6. Bonyongo MC, Mubyana T (2004) Soil nutrient status in vegetation communities of the Okavango Delta floodplains. S Afr J Sci 100(7–8):337–340Google Scholar
  7. Bottcher AB, Lzuno FT (1994) Everglades agriculture area (EAA): water, soil, crop, and environmental management. University Press of Florida, FLGoogle Scholar
  8. Brodowski S, Rodionov A, Haumaier L, Glaser B, Amelung W (2005) Revised black carbon assessment using benzene polycarboxylic acids. Org Geochem 36(9):1299–1310CrossRefGoogle Scholar
  9. Cawley KM, Wolski P, Mladenov N, Jaffé R (2012) Dissolved organic matter biogeochemistry along a transect of the Okavango delta Botswana. Wetlands 32(3):475–486CrossRefGoogle Scholar
  10. Cawley KM, Yamashita Y, Maie N, Jaffé R (2013) Using dissolved organic matter (DOM) optical properties to quantify mangrove inputs to the DOM pool in the Shark and Harney Rivers, Everglades National Park, Florida, USA. Estuar Coasts DOI:  10.1007/s12237-013-9681-5
  11. Chen M, Maie N, Parish K, Jaffé R (2013) Spatial and temporal variability of dissolved organic matter quantity and composition in an oligotrophic subtropical coastal wetland. Biogeochem 115(1–3):167–183CrossRefGoogle Scholar
  12. Childers DL, Boyer JN, Davis SE, Madden CJ, Rudnick DT, Sklar FH (2006) Relating precipitation and water management to nutrient concentrations in the oligotrophic “upside-down” estuaries of the Florida Everglades. Limnol Oceanogr 51(1):602–616CrossRefGoogle Scholar
  13. Crutzen PJ, Andreae MO (1990) Biomass burning in the tropics—impact on atmospheric chemistry and biogeochemical cycles. Science 250(4988):1669–1678CrossRefGoogle Scholar
  14. Cusack D, Chadwick OA, Hockaday WC, Vitousek PM (2012) Mineralogical controls on soil black carbon preservation. Glob Biogeochem Cy 26:GB2019CrossRefGoogle Scholar
  15. Czimczik CI, Masiello CA (2007) Controls on black carbon storage in soils. Glob Biogeochem Cy 21:GB3005CrossRefGoogle Scholar
  16. Deforce K, Bastiaens J, Van Neer W, Ervynck A, Lenracker A, Segant J, Crombé P (2013) Wood charcoal and seeds as indicators for animal husbandry in a wetland site during the late mesolithic–early neolithic transition period (Swifterbant culture, ca. 4600–4000 BC) in NW Belgium”. Veget Hist Archaeobot 22(1):51–60CrossRefGoogle Scholar
  17. Dickens AF, Gelinas Y, Masiello CA, Wakeham S, Hedges JI (2004) Reburial of fossil organic carbon in marine sediments. Nature 427(6972):336–339CrossRefGoogle Scholar
  18. Ding Y, Yamashita Y, Dodds W, Jaffé R (2013) Dissolved black carbon in grassland streams: is there an effect of recent fire history? Chemosphere 90(10):2557–2562CrossRefGoogle Scholar
  19. Dittmar T (2008) The molecular level determination of black carbon in marine dissolved organic matter. Org Geochem 39(4):396–407CrossRefGoogle Scholar
  20. Dittmar T, Koch BP (2006) Thermogenic organic matter dissolved in the abyssal ocean. Mar Chem 102(3–4):208–217CrossRefGoogle Scholar
  21. Dittmar T, de Rezende CE, Manecki M, Niggemann J, Ovalle ARC, Stubbins A, Bernardes MC (2012a) Continuous flux of dissolved black carbon from a vanished tropical forest biome. Nat Geosci 5(9):618–622CrossRefGoogle Scholar
  22. Dittmar T, Paeng J, Gihring TM, Suryaputra IGNA, Huettel M (2012b) Discharge of dissolved black carbon from a fire-affected intertidal system. Limonol Oceanogr 57(4):1171–1181CrossRefGoogle Scholar
  23. Duever MJ, Meeder JF, Meeder LC, McCollom JM (1994) The climate of south Florida and its role in shaping the Everglades ecosystem. In: Davis SM, Ogden JC (eds) Everglades: the ecosystem and its restoration. Lucie Press, Boca Raton, pp 225–248Google Scholar
  24. Ellery WN, McCarthy TS, Smith ND (2003) Vegetation, hydrology, and sedimentation patterns on the major distributary system of the Okavango Fan Botswana. Wetlands 23(2):357–375CrossRefGoogle Scholar
  25. Flores C, Bounds DL, Ruby DE (2011) Does prescribed fire benefit wetland vegetation? Wetlands 31(1):35–44CrossRefGoogle Scholar
  26. Forbes MS, Raison RJ, Skjemstad JO (2006) Formation, transformation and transport of black carbon (charcoal) in terrestrial and aquatic ecosystems. Sci Total Environ 370(1):190–206CrossRefGoogle Scholar
  27. Glaser B, Haumaier L, Guggenberger G, Zech W (1998) Black carbon in soils: the use of benzenecarboxylic acids as specific markers. Org Geochem 29(4):811–819CrossRefGoogle Scholar
  28. Goldberg ED (1985) Black carbon in the environment: properties and distribution. Wiley, New YorkGoogle Scholar
  29. Gonzalez-Perez JA, Gonzalez-Vila FJ, Almendros G, Knicker H (2004) The effect of fire on soil organic matter—a review. Environ Int 30(6):855–870CrossRefGoogle Scholar
  30. Guggenberger G, Rodionov A, Shibistova O, Grabe M, Kasansky OA, Fuchs H, Mikheyeva N, Zrazhevskaya G, Flessa H (2008) Storage and mobility of black carbon in permafrost soils of the forest tundra ecotone in Northern Siberia. Glob Change Biol 14(6):1367–1381CrossRefGoogle Scholar
  31. Hamilton SK, Sippel SJ, Melack JM (1996) Inundation patterns in the Pantanal wetland of South America determined from passive microwave remote sensing. Arch Hydrobiol 137(1):1–23Google Scholar
  32. Hammes K, Schmidt MWI, Smernik RJ, Currie LA, Ball WP, Nguyen TH, Louchouarn P, Houel S, Gustafsson O, Elmquist M, Cornelissen G, Skjemstad JO, Masiello CA, Song J, Song J, Peng P, Mitra S, Dunn JC, Hatcher PG, Hockaday WC, Smith DM, Hartkopf-Froeder C, Boehmer A, Luer B, Huebert BJ, Amelung W, Brodowski S, Huang L, Zhang W, Gschwend PM, Flores-Cervantes DX, Largeau C, Rouzaud JN, Rumpel C, Guggenberger G, Kaiser K, Rodionov A, Gonzalez-Vila FJ, Gonzalez-Perez JA, de La Rosa JM, Manning DAC, Lopez-Capel E, Ding L (2007) Comparison of quantification methods to measure fire-derived (black/elemental) carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere. Global Biogeochem Cy 21(3):GB3016CrossRefGoogle Scholar
  33. Hedges JI, Kei RG, Benner R (1997) What happens to terrestrial organic matter in the ocean? Org Geochem 27(5–6):195–212CrossRefGoogle Scholar
  34. Heinl M, Neuenschwander A, Sliva J, Vanderpost C (2006) Interactions between fire and flooding in a southern African floodplain system (Okavango Delta, Botswana). Landsc Ecol 21(5):699–709CrossRefGoogle Scholar
  35. Heinl M, Frost P, Vanderpost C, Sliva J (2007) Fire activity on drylands and floodplains in the southern Okavango Delta Botswana. J Arid Environ 68(1):77–87CrossRefGoogle Scholar
  36. Hernes P, Hedges J (2000) Determination of condensed tannin monomers in environmental samples by capillary gas chromatography of acid depolymerization extracts. Anal Chem 72:5115–5124CrossRefGoogle Scholar
  37. Hockaday WC, Grannas AM, Kim S, Hatcher PG (2007) The transformation and mobility of charcoal in a fire-impacted watershed. Geochim Cosmochim Ac 71(14):3432–3445CrossRefGoogle Scholar
  38. Iriarte J, Power MJ, Rostain S, Mayle FE, Jones H, Watling J, Whitney BS, McKey DB (2012) Fire-free land use in pre-1492 Amazonian savannas. P Natl Acad Sci USA 109(17):6473–6478CrossRefGoogle Scholar
  39. Jaffé R, Ding Y, Niggemann JN, Vähätalo A, Stubbins A, Spencer RGM, Campbell J, Dittmar T (2013) Global charcoal mobilization from soils via dissolution and riverine transport to the oceans. Science 340(6130):345–347CrossRefGoogle Scholar
  40. Kane ES, Hockaday WC, Turetsky MR, Masiello CA, Valentine DW, Finney BP, Baldock JA (2010) Topographic controls on black carbon accumulation in Alaskan black spruce forest soils: implications for organic matter dynamics. Biogeochem 100(1–3):39–56CrossRefGoogle Scholar
  41. Kim SW, Kaplan LA, Benner R, Hatcher PG (2004) Hydrogen-deficient molecules in natural riverine water samples—evidence for the existence of black carbon in DOM. Mar Chem 92(1–4):225–234CrossRefGoogle Scholar
  42. Koch GR, Childers DL, Staehr PA, Price RM, Davis SE, Gaiser EE (2012) Hydrological Conditions Control P Loading and Aquatic Metabolism in an Oligotrophic, Subtropical Estuary. Estuar Coast 35(1): 292–307Google Scholar
  43. Kuhlbusch TAJ, Crutzen PJ (1996) Black Carbon, the Global Carbon Cycle, and Atmospheric Carbon Dioxide. In: Levine JS (ed) Biomass burning and global change. MIT Press, Campbridge, pp 160–169Google Scholar
  44. Maie N, Boyer JN, Yang CY, Jaffe R (2006a) Spatial, geomorphological, and seasonal variability of CDOM in estuaries of the Florida Coastal Everglades. Hydrobiologia 569:135–150CrossRefGoogle Scholar
  45. Maie N, Jaffe R, Miyoshi T, Childers DL (2006b) Quantitative and qualitative aspects of dissolved organic carbon leached from senescent plants in an oligotrophic wetland. Biogeochem 78(3):285–314CrossRefGoogle Scholar
  46. Maie N, Parish KJ, Watanabe A, Knicker H, Benner R, Abe T, Kaiser K, Jaffe R (2006c) Chemical characteristics of dissolved organic nitrogen in an oligotrophic subtropical coastal ecosystem. Geochim Cosmochim Ac 70(17):4491–4506CrossRefGoogle Scholar
  47. Maie N, Scully NM, Pisani O, Jaffe R (2007) Composition of a protein-like fluorophore of dissolved organic matter in coastal wetland and estuarine ecosystems. Water Res 41(3):563–570CrossRefGoogle Scholar
  48. Mannino A, Harvey HR (2004) Black carbon in estuarine and coastal ocean dissolved organic matter. Limnol Oceanogr 49(3):735–740CrossRefGoogle Scholar
  49. Marques EP, Sa LDA, Karam HA, Alvala RCS, Souza A, Pereira MMR (2008) Atmospheric surface layer characteristics of turbulence above the Pantanal wetland regarding the similarity theory. Agr For Meteorol 148(6–7):883–892CrossRefGoogle Scholar
  50. Masiello CA (2004) New directions in black carbon organic geochemistry. Mar Chem 92(1–4):201–213CrossRefGoogle Scholar
  51. McCarthy TS, Cooper GRJ, Tyson PD, Ellery WN (2000) Seasonal flooding in the Okavango delta, Botswana—recent history and future prospects. S Afr J Sci 96(1):25–33Google Scholar
  52. Mitra S, Bianchi TS, McKee BA, Sutula M (2002) Black carbon from the Mississippi River: quantities, sources, and potential implications for the global carbon cycle. Environ Sci Technol 36(11):2296–2302CrossRefGoogle Scholar
  53. Mladenov N, McKnight DM, Wolski P, Ramberg L (2005) Effects of annual flooding on dissolved organic carbon dynamics within a prestine wetland, the Okavango Delta of Botswana. Wetlands 25(3):622–638CrossRefGoogle Scholar
  54. Nuttle WK, Fourqurean JW, Cosby BJ, Zieman JC, Robblee MB (2000) Influence of net freshwater supply on salinity in FBFB. Water Resour Res 36(7):1805–1822CrossRefGoogle Scholar
  55. Penner JE, Eddleman H, Novakov T (1993) Towards, the development of a global inventory for black carbon emissions. Atmos Environ Part a-General Topics 27(8):1277–1295CrossRefGoogle Scholar
  56. Perminova IV, Grechishcheva NY, Petrosyan VS (1999) Relationships between structure and binding affinity of humic substances for polycyclic aromatic hydrocarbons: relevance of molecular descriptors. Environ Sci Technol 33:3781–3787CrossRefGoogle Scholar
  57. Por FD (1995) The Pantanal of Mato Grosso (Brazil): World’s largest wetlands. Kluwer Academic, DordrechtCrossRefGoogle Scholar
  58. Ramberg L, Lindholm M, Hessen DO, Murray-Hudson M, Bonyongo C, Heinl M, Masamba W, VanderPost C, Wolski P (2010) Aquatic ecosystem responses to fire and flood size in the Okavango delta: observations from the seasonal floodplains. Wetl Ecol Manag 18(5):587–595CrossRefGoogle Scholar
  59. Raymond PA, McClelland JW, Holmes RM, Zhulidov AV, Mull K, Peterson BJ, Striegl RG, Aiken GR, Gurtovaya TY (2007) Flux and age of dissolved organic carbon exported to the Arctic Ocean: a carbon isotopic study of the five largest arctic rivers. Global Biogeochem Cy 21(4):GB4011CrossRefGoogle Scholar
  60. Rodionov A, Amelung W, Peinemann N, Haumaier L, Zhang X, Kleber M, Glaser B, Urusevskaya I, Zech W (2010) Black carbon in grassland ecosystems of the world, Global Biogeochem Cy 24, doi: 10.1029/2009GB003669
  61. Roth RJ, Lehndorff E, Brodowski S, Bornemann L, Sanchez-García L, Gustafsson Ö, Amelung W (2012) Differentiation of charcoal, soot and diagenetic carbon in soil: method comparison and perspectives. Org Geochem 46:66–75CrossRefGoogle Scholar
  62. Saunders CJ, Gao M, Lynch JA, Jaffé R, Childers DL (2006) Using soil profiles of seeds and molecular markers as proxies for sawgrass and wet prairie slough vegetation in Shark Slough. Everglades National Park. Hydrobiologia 569(1):475–492CrossRefGoogle Scholar
  63. Schlesinger WH, Melack JM (1981) Transport of organic carbon in the world’s rivers. Tellus 33(2):172–187CrossRefGoogle Scholar
  64. Schmidt MWI, Noack AG (2000) Black carbon in soils and sediments: analysis, distribution, implications, and current challenges. Global Biogeochem Cy 14(3):777–793CrossRefGoogle Scholar
  65. Schneider MPW, Hilf M, Vogt UF, Schmidt MWI (2010) The benzene polycarboxylic acid (BPCA) pattern of wood pyrolyzed between 200 degrees C and 1000 degrees C. Org Geochem 41(10):1082–1088CrossRefGoogle Scholar
  66. Schroeder W, Morisette JT, Csiszar I, Giglio L, Morton D, Justice CO (2005) Characterizing vegetation fire dynamics in Brazil through multisatellite data: common trends and practical issues. Earth Interact 9(13):1–26CrossRefGoogle Scholar
  67. Spencer RGM, Hernes PJ, Aufdenkampe AK, Baker A, Gulliver P, Stubbins A, Aiken GR, Dyda RY, Butler KD, Mwanba VL, Mangangu AM, Wabakanghanzi JN, Six J (2012) An initial investigation into the organic matter biogeochemistry of the Congo River. Geochim Cosmochim Ac 84:614–627CrossRefGoogle Scholar
  68. Stubbins A, Niggemann J, Dittmar T (2012) Photo-lability of deep ocean dissolved black carbon. Biogeosciences 9(5):1661–1670CrossRefGoogle Scholar
  69. Suman DO, Kuhlbusch TAJ, Lim B (1997) Marine sediments: a reservoir for black carbon and their use as spatial and temporal records of combustion. In: Clark JS, Cachier H, Goldammer JG, Stock BJ (eds) Sediment records of biomass burning and global change. Springer, BerlinGoogle Scholar
  70. Tzortziou M, Neale PJ, Osburn CL, Megonigal JP, Maie N, Jaffe R (2008) Tidal marshes as a source of optically and chemically distinctive colored dissolved organic matter in the Chesapeake Bay. Limnol Oceanogr 53(1):148–159CrossRefGoogle Scholar
  71. Wade D, Ewel J, Hofstetter R (1980) Fire in south Florida ecosystems. General Technical Report SE-17, Southeastern Forest Experiment Station, AshevilleGoogle Scholar
  72. Weishaar JL, Aiken GR, Bergamaschi BA, Fram MS, Fuji R, Mopper K (2003) Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Envrion Sci Technol 37(20):4702–4708CrossRefGoogle Scholar
  73. Winkler MG, Sanford PR, Kaplan SW (2001) Hydrology, vegetation, and climate change in the southern Everglades during the Holocene. In: Wardlaw BR (ed) Bulletin of American paleontology. Paleontological Research Institution, Ithaca, pp 57–100Google Scholar
  74. Wolski P, Savenije HHG (2006) Dynamics of floodplain-island groundwater flow in the Okavango Delta Botswana. J Hydrol 320(3–4):283–301CrossRefGoogle Scholar
  75. Wu YG, Sklar FH, Gopu K, Rutchey K (1996) Fire simulations in the Everglades landscape using parallel programming. Ecol Model 93(1–3):113–124Google Scholar
  76. Xu XF, Tian HQ, Pan ZJ, Thomas CR (2011) Modeling ecosystem responses to prescribed fires in a phosphorus-enriched Everglades wetland: II. Phosphorus dynamics and community shift in response to hydrological and seasonal scenarios. Ecol Model 222(23–24):3942–3956CrossRefGoogle Scholar
  77. Yamashita Y, Scinto LJ, Maie N, Jaffé R (2010) Dissolved organic matter characteristics across a subtropical wetland’s landscape: application of optical properties in the assessment of envrionmental dynamics. Ecosystmes 13(7):1006–1019CrossRefGoogle Scholar
  78. Ziolkowski LA, Druffel ERM (2010) Aged black carbon identified in marine dissolved organic carbon. Geophys Res Lett 37:L16601CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Yan Ding
    • 1
    • 2
  • Kaelin M. Cawley
    • 2
    • 4
  • Catia Nunes da Cunha
    • 3
  • Rudolf Jaffé
    • 1
    • 2
    Email author
  1. 1.Department of Chemistry and Biochemistry, Marine Sciences ProgramFlorida International UniversityNorth MiamiUSA
  2. 2.Southeast Environmental Research CenterFlorida International UniversityMiamiUSA
  3. 3.Depto. Botânica e Ecologia, Núcleo de Estudos Ecológicos do PantanalUniversidade Federal de Mato GrossoCuiabaBrazil
  4. 4.Department of Civil, Environmental, and Architectural Engineering, The Institute for Arctic and Alpine Research (INSTAAR)University of Colorado at BoulderBoulderUSA

Personalised recommendations